山楂相关植物化学物质及其对不明丝虫病的影响研究

IF 1.7 4区 农林科学 Q2 AGRONOMY
M. M. Abdullah, Amir Khan, Hasan B. Albargi, M. Ahmad, J. Ahmad, Faheem Ahmad, Mohammad Shabib Akhtar, Nehal Mohsin, Fuzail Ahmad, M. A. Kamal, Yaser E. Alqurashi, H. Lal, JariS. Algethami
{"title":"山楂相关植物化学物质及其对不明丝虫病的影响研究","authors":"M. M. Abdullah, Amir Khan, Hasan B. Albargi, M. Ahmad, J. Ahmad, Faheem Ahmad, Mohammad Shabib Akhtar, Nehal Mohsin, Fuzail Ahmad, M. A. Kamal, Yaser E. Alqurashi, H. Lal, JariS. Algethami","doi":"10.1080/09064710.2023.2194305","DOIUrl":null,"url":null,"abstract":"ABSTRACT Root-knot nematodes (Meloidogyne spp.) are sedentary endo-parasite that causes severe yield loss in carrot. Chemical nematicides currently used to manage Meloidogyne incognita are being phased out because of rising health and environmental issues. This study aimed to evaluate nematicidal effect of various concentrations, viz., 250, 500, 750, 1000ppm of leaf extract of Ipomoea carnea against M. incognita infecting carrot under in vitro and in pots assays. In our result, all tested concentrations displayed J2s mortality and egg hatching inhibition along with improving growth of carrot and reduced J2s population and root-knot index. Molecular docking performed predicts binding interactions of two major compounds, viz., neophytadiene and 2-amino-2-methyl-1-propanol as shown by GC-MS analysis with targeted protein, odorant response gene-1 of M. incognita, to confirm nematicidal action of I. carnea leaf extract. The obtained results also suggested that neophytadiene interacted more and strongly bound with odorant response gene-3 than 2-amino-2-methyl-1-propanol. The biochemical ligand-target protein interaction described in the present work will be helpful in the logical selection of biomolecules and essential proteins. Therefore, plant extract may be used the best alternative to chemical nematicides to control root-knot nematodes and caused longitudinal growth of the plant as well as reduce environmental risks.","PeriodicalId":40817,"journal":{"name":"Acta Agriculturae Scandinavica Section B-Soil and Plant Science","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ipomoea carnea associated phytochemicals and their in silico investigation towards Meloidogyne incognita\",\"authors\":\"M. M. Abdullah, Amir Khan, Hasan B. Albargi, M. Ahmad, J. Ahmad, Faheem Ahmad, Mohammad Shabib Akhtar, Nehal Mohsin, Fuzail Ahmad, M. A. Kamal, Yaser E. Alqurashi, H. Lal, JariS. Algethami\",\"doi\":\"10.1080/09064710.2023.2194305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Root-knot nematodes (Meloidogyne spp.) are sedentary endo-parasite that causes severe yield loss in carrot. Chemical nematicides currently used to manage Meloidogyne incognita are being phased out because of rising health and environmental issues. This study aimed to evaluate nematicidal effect of various concentrations, viz., 250, 500, 750, 1000ppm of leaf extract of Ipomoea carnea against M. incognita infecting carrot under in vitro and in pots assays. In our result, all tested concentrations displayed J2s mortality and egg hatching inhibition along with improving growth of carrot and reduced J2s population and root-knot index. Molecular docking performed predicts binding interactions of two major compounds, viz., neophytadiene and 2-amino-2-methyl-1-propanol as shown by GC-MS analysis with targeted protein, odorant response gene-1 of M. incognita, to confirm nematicidal action of I. carnea leaf extract. The obtained results also suggested that neophytadiene interacted more and strongly bound with odorant response gene-3 than 2-amino-2-methyl-1-propanol. The biochemical ligand-target protein interaction described in the present work will be helpful in the logical selection of biomolecules and essential proteins. Therefore, plant extract may be used the best alternative to chemical nematicides to control root-knot nematodes and caused longitudinal growth of the plant as well as reduce environmental risks.\",\"PeriodicalId\":40817,\"journal\":{\"name\":\"Acta Agriculturae Scandinavica Section B-Soil and Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agriculturae Scandinavica Section B-Soil and Plant Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/09064710.2023.2194305\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agriculturae Scandinavica Section B-Soil and Plant Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/09064710.2023.2194305","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ipomoea carnea associated phytochemicals and their in silico investigation towards Meloidogyne incognita
ABSTRACT Root-knot nematodes (Meloidogyne spp.) are sedentary endo-parasite that causes severe yield loss in carrot. Chemical nematicides currently used to manage Meloidogyne incognita are being phased out because of rising health and environmental issues. This study aimed to evaluate nematicidal effect of various concentrations, viz., 250, 500, 750, 1000ppm of leaf extract of Ipomoea carnea against M. incognita infecting carrot under in vitro and in pots assays. In our result, all tested concentrations displayed J2s mortality and egg hatching inhibition along with improving growth of carrot and reduced J2s population and root-knot index. Molecular docking performed predicts binding interactions of two major compounds, viz., neophytadiene and 2-amino-2-methyl-1-propanol as shown by GC-MS analysis with targeted protein, odorant response gene-1 of M. incognita, to confirm nematicidal action of I. carnea leaf extract. The obtained results also suggested that neophytadiene interacted more and strongly bound with odorant response gene-3 than 2-amino-2-methyl-1-propanol. The biochemical ligand-target protein interaction described in the present work will be helpful in the logical selection of biomolecules and essential proteins. Therefore, plant extract may be used the best alternative to chemical nematicides to control root-knot nematodes and caused longitudinal growth of the plant as well as reduce environmental risks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
56
审稿时长
2.3 months
期刊介绍: Acta Agriculturæ Scandinavica Section B publishes original research in applied soil and plant science with special attention given to to crop production in agri- and horticultural systems. We welcome manuscripts dealing with: Climate smart and sustainable crop production systems Water and nutrient efficiency Soil conservation and productivity Precise agriculture systems Applications of bio- and nanotechnology Digitalisation and robotics Soil-plant interactions Acta Agriculturæ Scandinavica, Section B – Soil & Plant Science forms part of a series of titles published on behalf of the Nordic Association of Agricultural Science (NJF). The series also includes Section A - Animal Science .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信