几乎可以肯定的理论

James F. Lynch
{"title":"几乎可以肯定的理论","authors":"James F. Lynch","doi":"10.1016/0003-4843(80)90014-5","DOIUrl":null,"url":null,"abstract":"<div><p>If <figure><img></figure> is a model with universe <span><math><mtext>U </mtext><mtext>and</mtext><mtext> Q ⊆ </mtext><msup><mi></mi><mn>q</mn></msup><mtext>U</mtext></math></span> where q is a fixed positive integer, we put <figure><img></figure>〈<em>Q</em>〉 for the expansion of <figure><img></figure> with the new relation <em>Q</em>. We study sets of relations defined by <span><span><span><math><mtext>S(σ) = {Q⊆</mtext><msup><mi></mi><mn>q</mn></msup><mtext>U:</mtext><mglyph></mglyph><mtext>〈Q〉⊨σ}</mtext></math></span></span></span> where σ is a first-order sentence with equality of the appropriate type and <span><math><mtext>|U|⩽ℵ</mtext><msub><mi></mi><mn>0</mn></msub></math></span>. For some simple countable structures <figure><img></figure>, we show that <em>S</em>(<em>σ</em>) is almost all of <figure><img></figure>2 or almost none of it, for certain topologies and measures. We have analogous results for the cardinality of <em>S</em>(<em>σ</em>) for some finite structures <figure><img></figure> with large enough <em>U</em>.</p><p>Some of the structures we examine, in both the countable and finite case, are sets with a successor relation and cyclic groups.</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"18 2","pages":"Pages 91-135"},"PeriodicalIF":0.0000,"publicationDate":"1980-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90014-5","citationCount":"63","resultStr":"{\"title\":\"Almost sure theories\",\"authors\":\"James F. Lynch\",\"doi\":\"10.1016/0003-4843(80)90014-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>If <figure><img></figure> is a model with universe <span><math><mtext>U </mtext><mtext>and</mtext><mtext> Q ⊆ </mtext><msup><mi></mi><mn>q</mn></msup><mtext>U</mtext></math></span> where q is a fixed positive integer, we put <figure><img></figure>〈<em>Q</em>〉 for the expansion of <figure><img></figure> with the new relation <em>Q</em>. We study sets of relations defined by <span><span><span><math><mtext>S(σ) = {Q⊆</mtext><msup><mi></mi><mn>q</mn></msup><mtext>U:</mtext><mglyph></mglyph><mtext>〈Q〉⊨σ}</mtext></math></span></span></span> where σ is a first-order sentence with equality of the appropriate type and <span><math><mtext>|U|⩽ℵ</mtext><msub><mi></mi><mn>0</mn></msub></math></span>. For some simple countable structures <figure><img></figure>, we show that <em>S</em>(<em>σ</em>) is almost all of <figure><img></figure>2 or almost none of it, for certain topologies and measures. We have analogous results for the cardinality of <em>S</em>(<em>σ</em>) for some finite structures <figure><img></figure> with large enough <em>U</em>.</p><p>Some of the structures we examine, in both the countable and finite case, are sets with a successor relation and cyclic groups.</p></div>\",\"PeriodicalId\":100093,\"journal\":{\"name\":\"Annals of Mathematical Logic\",\"volume\":\"18 2\",\"pages\":\"Pages 91-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0003-4843(80)90014-5\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0003484380900145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0003484380900145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

如果是一个具有宇宙U和Q的模型,其中Q为固定正整数,则将< Q >与新关系Q展开。研究由S(σ) = {Q规模曲:< Q >∑}定义的关系集,其中σ为合适类型相等的一阶句子,且|U|≤∧0。对于一些简单的可数结构,我们证明了对于某些拓扑和测度,S(σ)几乎全为2或几乎不为2。对于一些具有足够大u的有限结构,我们得到了S(σ)的基数性的类似结果。在可数和有限情况下,我们研究的一些结构是具有后继关系和循环群的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost sure theories

If

is a model with universe U and Q ⊆ qU where q is a fixed positive integer, we put
Q〉 for the expansion of
with the new relation Q. We study sets of relations defined by S(σ) = {Q⊆qU:〈Q〉⊨σ} where σ is a first-order sentence with equality of the appropriate type and |U|⩽ℵ0. For some simple countable structures
, we show that S(σ) is almost all of
2 or almost none of it, for certain topologies and measures. We have analogous results for the cardinality of S(σ) for some finite structures
with large enough U.

Some of the structures we examine, in both the countable and finite case, are sets with a successor relation and cyclic groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信