微分方程数值积分中的对称共轭复合方法

S. Blanes, F. Casas, P. Chartier, A. Escorihuela-Tomàs
{"title":"微分方程数值积分中的对称共轭复合方法","authors":"S. Blanes, F. Casas, P. Chartier, A. Escorihuela-Tomàs","doi":"10.1090/mcom/3715","DOIUrl":null,"url":null,"abstract":"We analyze composition methods with complex coefficients exhibiting the so-called “symmetry-conjugate” pattern in their distribution. In particular, we study their behavior with respect to preservation of qualitative properties when projected on the real axis and we compare them with the usual left-right palindromic compositions. New schemes within this family up to order 8 are proposed and their efficiency is tested on several examples. Our analysis shows that higherorder schemes are more efficient even when time step sizes are relatively large. AMS numbers: 65L05, 65P10, 37M15","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"1739-1761"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On symmetric-conjugate composition methods in the numerical integration of differential equations\",\"authors\":\"S. Blanes, F. Casas, P. Chartier, A. Escorihuela-Tomàs\",\"doi\":\"10.1090/mcom/3715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze composition methods with complex coefficients exhibiting the so-called “symmetry-conjugate” pattern in their distribution. In particular, we study their behavior with respect to preservation of qualitative properties when projected on the real axis and we compare them with the usual left-right palindromic compositions. New schemes within this family up to order 8 are proposed and their efficiency is tested on several examples. Our analysis shows that higherorder schemes are more efficient even when time step sizes are relatively large. AMS numbers: 65L05, 65P10, 37M15\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"1 1\",\"pages\":\"1739-1761\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们分析了具有复系数的复合方法在其分布上表现出所谓的“对称共轭”模式。特别是,我们研究了它们在投影到实轴上时关于保留定性性质的行为,并将它们与通常的左右回文组合进行了比较。在该族中提出了高达8阶的新方案,并通过几个实例验证了它们的有效性。我们的分析表明,即使时间步长相对较大,高阶方案也更有效。AMS编号:65L05, 65P10, 37M15
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On symmetric-conjugate composition methods in the numerical integration of differential equations
We analyze composition methods with complex coefficients exhibiting the so-called “symmetry-conjugate” pattern in their distribution. In particular, we study their behavior with respect to preservation of qualitative properties when projected on the real axis and we compare them with the usual left-right palindromic compositions. New schemes within this family up to order 8 are proposed and their efficiency is tested on several examples. Our analysis shows that higherorder schemes are more efficient even when time step sizes are relatively large. AMS numbers: 65L05, 65P10, 37M15
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信