{"title":"基于张量补丁的判别边缘最小二乘回归用于膜性肾病高光谱数据分类","authors":"Tianhong Chen, Meng Lv, Yue Yang, Tianqi Tu, Wei Li, Wenge Li","doi":"10.1117/12.2604862","DOIUrl":null,"url":null,"abstract":"Least squares regression (LSR)-based classifiers are effective in multi-classification tasks. For hyperspectral image (HSI) classification, the spatial structure information usually helps to improve the performance, however, most existing LSRbased methods use the spectral-vector as input which ignore the important correlations in the spatial domain. To solve the drawback, a tensor-patch-based discriminative marginalized least squares regression (TPDMLSR) is proposed to modify discriminative marginalized least squares regression (DMLSR) with consideration of inter-class separability by employing the region covariance matrix (RCM). RCM is adopted to exploit a region of interest around each hyperspectral pixel to characterize the intrinsic spatial geometric structure of HSI. Specifically, TPDMLSR not only maintains the ascendancy of DMLSR, but also preserves the spatial-spectral structure and enhances the ability of class discrimination for regression by learning the tensor-patch manifold term with a new region covariance descriptor and measuring the inter-class similarity more accurately. The experimental results on membranous nephropathy (MN) dataset validate that TPDMLSR significantly outperforms LSR-based methods reflected in sensitivity, overall accuracy (OA), average accuracy (AA) and Kappa coefficient (Kappa).","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"31 1","pages":"119130A - 119130A-8"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor-patch-based discriminative marginalized least squares regression for membranous nephropathy hyperspectral data classification\",\"authors\":\"Tianhong Chen, Meng Lv, Yue Yang, Tianqi Tu, Wei Li, Wenge Li\",\"doi\":\"10.1117/12.2604862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Least squares regression (LSR)-based classifiers are effective in multi-classification tasks. For hyperspectral image (HSI) classification, the spatial structure information usually helps to improve the performance, however, most existing LSRbased methods use the spectral-vector as input which ignore the important correlations in the spatial domain. To solve the drawback, a tensor-patch-based discriminative marginalized least squares regression (TPDMLSR) is proposed to modify discriminative marginalized least squares regression (DMLSR) with consideration of inter-class separability by employing the region covariance matrix (RCM). RCM is adopted to exploit a region of interest around each hyperspectral pixel to characterize the intrinsic spatial geometric structure of HSI. Specifically, TPDMLSR not only maintains the ascendancy of DMLSR, but also preserves the spatial-spectral structure and enhances the ability of class discrimination for regression by learning the tensor-patch manifold term with a new region covariance descriptor and measuring the inter-class similarity more accurately. The experimental results on membranous nephropathy (MN) dataset validate that TPDMLSR significantly outperforms LSR-based methods reflected in sensitivity, overall accuracy (OA), average accuracy (AA) and Kappa coefficient (Kappa).\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"31 1\",\"pages\":\"119130A - 119130A-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2604862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tensor-patch-based discriminative marginalized least squares regression for membranous nephropathy hyperspectral data classification
Least squares regression (LSR)-based classifiers are effective in multi-classification tasks. For hyperspectral image (HSI) classification, the spatial structure information usually helps to improve the performance, however, most existing LSRbased methods use the spectral-vector as input which ignore the important correlations in the spatial domain. To solve the drawback, a tensor-patch-based discriminative marginalized least squares regression (TPDMLSR) is proposed to modify discriminative marginalized least squares regression (DMLSR) with consideration of inter-class separability by employing the region covariance matrix (RCM). RCM is adopted to exploit a region of interest around each hyperspectral pixel to characterize the intrinsic spatial geometric structure of HSI. Specifically, TPDMLSR not only maintains the ascendancy of DMLSR, but also preserves the spatial-spectral structure and enhances the ability of class discrimination for regression by learning the tensor-patch manifold term with a new region covariance descriptor and measuring the inter-class similarity more accurately. The experimental results on membranous nephropathy (MN) dataset validate that TPDMLSR significantly outperforms LSR-based methods reflected in sensitivity, overall accuracy (OA), average accuracy (AA) and Kappa coefficient (Kappa).