{"title":"非局部多点边界条件下分数阶微分方程解的存在唯一性","authors":"Faouzi Haddouchi","doi":"10.7153/DEA-2021-13-13","DOIUrl":null,"url":null,"abstract":"This paper presents some sufficient conditions for the existence of solutions of fractional differential equation with nonlocal multi-point boundary conditions involving Caputo fractional derivative and integral boundary conditions. Our analysis relies on the Banach contraction principle, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alternative. Finally, examples are provided to illustrate our main results.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"963 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the existence and uniqueness of solutions for fractional differential equations with nonlocal multi-point boundary conditions\",\"authors\":\"Faouzi Haddouchi\",\"doi\":\"10.7153/DEA-2021-13-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some sufficient conditions for the existence of solutions of fractional differential equation with nonlocal multi-point boundary conditions involving Caputo fractional derivative and integral boundary conditions. Our analysis relies on the Banach contraction principle, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alternative. Finally, examples are provided to illustrate our main results.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"963 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2021-13-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the existence and uniqueness of solutions for fractional differential equations with nonlocal multi-point boundary conditions
This paper presents some sufficient conditions for the existence of solutions of fractional differential equation with nonlocal multi-point boundary conditions involving Caputo fractional derivative and integral boundary conditions. Our analysis relies on the Banach contraction principle, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alternative. Finally, examples are provided to illustrate our main results.