非局部多点边界条件下分数阶微分方程解的存在唯一性

Faouzi Haddouchi
{"title":"非局部多点边界条件下分数阶微分方程解的存在唯一性","authors":"Faouzi Haddouchi","doi":"10.7153/DEA-2021-13-13","DOIUrl":null,"url":null,"abstract":"This paper presents some sufficient conditions for the existence of solutions of fractional differential equation with nonlocal multi-point boundary conditions involving Caputo fractional derivative and integral boundary conditions. Our analysis relies on the Banach contraction principle, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alternative. Finally, examples are provided to illustrate our main results.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"963 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the existence and uniqueness of solutions for fractional differential equations with nonlocal multi-point boundary conditions\",\"authors\":\"Faouzi Haddouchi\",\"doi\":\"10.7153/DEA-2021-13-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some sufficient conditions for the existence of solutions of fractional differential equation with nonlocal multi-point boundary conditions involving Caputo fractional derivative and integral boundary conditions. Our analysis relies on the Banach contraction principle, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alternative. Finally, examples are provided to illustrate our main results.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"963 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2021-13-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence and uniqueness of solutions for fractional differential equations with nonlocal multi-point boundary conditions
This paper presents some sufficient conditions for the existence of solutions of fractional differential equation with nonlocal multi-point boundary conditions involving Caputo fractional derivative and integral boundary conditions. Our analysis relies on the Banach contraction principle, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alternative. Finally, examples are provided to illustrate our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信