{"title":"部分b-度量空间中的不动点和悬臂梁问题","authors":"A. Tomar, M. Joshi, Venkatesh Bhatt","doi":"10.2478/ausm-2021-0032","DOIUrl":null,"url":null,"abstract":"Abstract We determine the common fixed point of two maps satisfying Hardy-Roger type contraction in a complete partial b-metric space without exploiting any variant of continuity or commutativity, which is indispensable in analogous results. Towards the end, we give examples and an application to solve a Cantilever beam problem employed in the distortion of an elastic beam in equilibrium to substantiate the utility of these improvements.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point and a Cantilever beam problem in a partial b-metric space\",\"authors\":\"A. Tomar, M. Joshi, Venkatesh Bhatt\",\"doi\":\"10.2478/ausm-2021-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We determine the common fixed point of two maps satisfying Hardy-Roger type contraction in a complete partial b-metric space without exploiting any variant of continuity or commutativity, which is indispensable in analogous results. Towards the end, we give examples and an application to solve a Cantilever beam problem employed in the distortion of an elastic beam in equilibrium to substantiate the utility of these improvements.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2021-0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fixed point and a Cantilever beam problem in a partial b-metric space
Abstract We determine the common fixed point of two maps satisfying Hardy-Roger type contraction in a complete partial b-metric space without exploiting any variant of continuity or commutativity, which is indispensable in analogous results. Towards the end, we give examples and an application to solve a Cantilever beam problem employed in the distortion of an elastic beam in equilibrium to substantiate the utility of these improvements.