半导体工业事故研究:基于BP人工神经网络的预测

L. Chao, Hsu PeiChen, Wu Jianping
{"title":"半导体工业事故研究:基于BP人工神经网络的预测","authors":"L. Chao, Hsu PeiChen, Wu Jianping","doi":"10.1109/IEEM.2013.6962460","DOIUrl":null,"url":null,"abstract":"This paper puts forward using BP artificial neural network to forecast semiconductor industry accidents, using optimized and quantifiable impact factors of accidents as input nodes and accident quantity as the output node. The established predictive model has 7 input parameters and 1 output parameter. This paper uses this model to predict and validate the accident occurrence circumstances of a semiconductor company and gets accurate results.","PeriodicalId":6454,"journal":{"name":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"16 1","pages":"492-496"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A study of semiconductor industry accidents: Making predictions based on BP artificial neural networks\",\"authors\":\"L. Chao, Hsu PeiChen, Wu Jianping\",\"doi\":\"10.1109/IEEM.2013.6962460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper puts forward using BP artificial neural network to forecast semiconductor industry accidents, using optimized and quantifiable impact factors of accidents as input nodes and accident quantity as the output node. The established predictive model has 7 input parameters and 1 output parameter. This paper uses this model to predict and validate the accident occurrence circumstances of a semiconductor company and gets accurate results.\",\"PeriodicalId\":6454,\"journal\":{\"name\":\"2013 IEEE International Conference on Industrial Engineering and Engineering Management\",\"volume\":\"16 1\",\"pages\":\"492-496\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Industrial Engineering and Engineering Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM.2013.6962460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2013.6962460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出利用BP人工神经网络对半导体行业事故进行预测,以优化的、可量化的事故影响因子作为输入节点,以事故数量作为输出节点。所建立的预测模型有7个输入参数和1个输出参数。本文利用该模型对某半导体公司的事故发生情况进行了预测和验证,得到了准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of semiconductor industry accidents: Making predictions based on BP artificial neural networks
This paper puts forward using BP artificial neural network to forecast semiconductor industry accidents, using optimized and quantifiable impact factors of accidents as input nodes and accident quantity as the output node. The established predictive model has 7 input parameters and 1 output parameter. This paper uses this model to predict and validate the accident occurrence circumstances of a semiconductor company and gets accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信