一种空间选择性扩散算子,用于通过大规模流传输被动或主动示踪剂

Thomas Dubos
{"title":"一种空间选择性扩散算子,用于通过大规模流传输被动或主动示踪剂","authors":"Thomas Dubos","doi":"10.1016/S1620-7742(01)01359-9","DOIUrl":null,"url":null,"abstract":"<div><p>In a fluid flow, fields are measurable up to a cut-off scale at which they are regularized. We show that, for a smooth velocity field, this regularization adds to the advection equation a diffusive term proportional to the strain tensor. We study in two dimensions its effect on the dynamics of velocity and vorticity, and on the conservation of quadratic invariants. Vorticity and energy are still conserved, while enstrophy and tracer variance are dissipated depending on the flow topology. These properties (conservation, dissipation, spatial selectivity) suggest the use of this selective strain–diffusion operator for numerical simulations of inhomogeneous flows in the quasi-two-dimensional approximation.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 7","pages":"Pages 509-516"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01359-9","citationCount":"1","resultStr":"{\"title\":\"Un opérateur de diffusion spatialement sélectif pour le transport d'un traceur passif ou actif par un écoulement de grande échelle\",\"authors\":\"Thomas Dubos\",\"doi\":\"10.1016/S1620-7742(01)01359-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a fluid flow, fields are measurable up to a cut-off scale at which they are regularized. We show that, for a smooth velocity field, this regularization adds to the advection equation a diffusive term proportional to the strain tensor. We study in two dimensions its effect on the dynamics of velocity and vorticity, and on the conservation of quadratic invariants. Vorticity and energy are still conserved, while enstrophy and tracer variance are dissipated depending on the flow topology. These properties (conservation, dissipation, spatial selectivity) suggest the use of this selective strain–diffusion operator for numerical simulations of inhomogeneous flows in the quasi-two-dimensional approximation.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 7\",\"pages\":\"Pages 509-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01359-9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在流体流动中,场是可测量的,直到它们被正则化的截止尺度。我们证明,对于光滑的速度场,这种正则化给平流方程增加了一个与应变张量成比例的扩散项。我们在二维上研究了它对速度和涡度动力学的影响,以及对二次不变量守恒的影响。涡度和能量仍然是守恒的,而熵和示踪剂方差根据流动拓扑被耗散。这些性质(守恒、耗散、空间选择性)建议使用这种选择性应变扩散算子在准二维近似下进行非均匀流动的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Un opérateur de diffusion spatialement sélectif pour le transport d'un traceur passif ou actif par un écoulement de grande échelle

In a fluid flow, fields are measurable up to a cut-off scale at which they are regularized. We show that, for a smooth velocity field, this regularization adds to the advection equation a diffusive term proportional to the strain tensor. We study in two dimensions its effect on the dynamics of velocity and vorticity, and on the conservation of quadratic invariants. Vorticity and energy are still conserved, while enstrophy and tracer variance are dissipated depending on the flow topology. These properties (conservation, dissipation, spatial selectivity) suggest the use of this selective strain–diffusion operator for numerical simulations of inhomogeneous flows in the quasi-two-dimensional approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信