一类不定非线性亥姆霍兹方程的对偶变分方法

Rainer Mandel, Dominic Scheider, Tolga A Yeşil
{"title":"一类不定非线性亥姆霍兹方程的对偶变分方法","authors":"Rainer Mandel, Dominic Scheider, Tolga A Yeşil","doi":"10.5445/IR/1000126434/V2","DOIUrl":null,"url":null,"abstract":"We prove new existence results for a Nonlinear Helmholtz equation with sign-changing nonlinearity of the form $$-\\Delta u-k^2u=Q(x)|u|^{p-2}u,\\quad u\\in W^{2,p}(\\mathbb{R}^N)$$ with $k>0, N\\ge3,p\\in\\left[\\frac{2(N+1)}{N-1},\\frac{2N}{N-2}\\right]$ and $Q\\in L^\\infty(\\mathbb{R}^N)$. Due to sign-changes of $Q$, our solutions have infinite Morse-Index in the \ncorresponding dual variational formulation.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual variational methods for an indefinte nonlinear Helmholtz equation\",\"authors\":\"Rainer Mandel, Dominic Scheider, Tolga A Yeşil\",\"doi\":\"10.5445/IR/1000126434/V2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove new existence results for a Nonlinear Helmholtz equation with sign-changing nonlinearity of the form $$-\\\\Delta u-k^2u=Q(x)|u|^{p-2}u,\\\\quad u\\\\in W^{2,p}(\\\\mathbb{R}^N)$$ with $k>0, N\\\\ge3,p\\\\in\\\\left[\\\\frac{2(N+1)}{N-1},\\\\frac{2N}{N-2}\\\\right]$ and $Q\\\\in L^\\\\infty(\\\\mathbb{R}^N)$. Due to sign-changes of $Q$, our solutions have infinite Morse-Index in the \\ncorresponding dual variational formulation.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000126434/V2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000126434/V2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们用$k>0, N\ge3,p\in\left[\frac{2(N+1)}{N-1},\frac{2N}{N-2}\right]$和$Q\in L^\infty(\mathbb{R}^N)$证明了形式为$$-\Delta u-k^2u=Q(x)|u|^{p-2}u,\quad u\in W^{2,p}(\mathbb{R}^N)$$的变符号非线性非线性非线性非线性非线性方程的新的存在性结果。由于$Q$的符号变化,我们的解在相应的对偶变分公式中具有无穷大的莫尔斯指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual variational methods for an indefinte nonlinear Helmholtz equation
We prove new existence results for a Nonlinear Helmholtz equation with sign-changing nonlinearity of the form $$-\Delta u-k^2u=Q(x)|u|^{p-2}u,\quad u\in W^{2,p}(\mathbb{R}^N)$$ with $k>0, N\ge3,p\in\left[\frac{2(N+1)}{N-1},\frac{2N}{N-2}\right]$ and $Q\in L^\infty(\mathbb{R}^N)$. Due to sign-changes of $Q$, our solutions have infinite Morse-Index in the corresponding dual variational formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信