平面上点构型的双单调细分

Elina Robeva, M. Sun
{"title":"平面上点构型的双单调细分","authors":"Elina Robeva, M. Sun","doi":"10.2140/astat.2021.12.125","DOIUrl":null,"url":null,"abstract":"Bimonotone subdivisions in two dimensions are subdivisions all of whose sides are either vertical or have nonnegative slope. They correspond to statistical estimates of probability distributions of strongly positively dependent random variables. The number of bimonotone subdivisions compared to the total number of subdivisions of a point configuration provides insight into how often the random variables are positively dependent. We give recursions as well as formulas for the numbers of bimonotone and total subdivisions of $2\\times n$ grid configurations in the plane. Furthermore, we connect the former to the large Schroder numbers. We also show that the numbers of bimonotone and total subdivisions of a $2\\times n$ grid are asymptotically equal. We then provide algorithms for counting bimonotone subdivisions for any $m \\times n$ grid. Finally, we prove that all bimonotone triangulations of an $m \\times n$ grid are connected by flips. This gives rise to an algorithm for counting the number of bimonotone (and total) triangulations of an $m\\times n$ grid.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimonotone subdivisions of point configurations in the plane\",\"authors\":\"Elina Robeva, M. Sun\",\"doi\":\"10.2140/astat.2021.12.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bimonotone subdivisions in two dimensions are subdivisions all of whose sides are either vertical or have nonnegative slope. They correspond to statistical estimates of probability distributions of strongly positively dependent random variables. The number of bimonotone subdivisions compared to the total number of subdivisions of a point configuration provides insight into how often the random variables are positively dependent. We give recursions as well as formulas for the numbers of bimonotone and total subdivisions of $2\\\\times n$ grid configurations in the plane. Furthermore, we connect the former to the large Schroder numbers. We also show that the numbers of bimonotone and total subdivisions of a $2\\\\times n$ grid are asymptotically equal. We then provide algorithms for counting bimonotone subdivisions for any $m \\\\times n$ grid. Finally, we prove that all bimonotone triangulations of an $m \\\\times n$ grid are connected by flips. This gives rise to an algorithm for counting the number of bimonotone (and total) triangulations of an $m\\\\times n$ grid.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2021.12.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2021.12.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维双单调细分是指所有边均为垂直或斜率为非负的细分。它们对应于强正相关随机变量的概率分布的统计估计。与点配置的总细分数相比,双单调细分数提供了对随机变量正相关频率的洞察。我们给出了平面上$2\ × n$网格构型的双单调和总细分数的递推式和公式。此外,我们将前者与大施罗德数联系起来。我们还证明了$2\ × n$网格的双单调和总细分的数目是渐近相等的。然后,我们提供了对任意$m \乘以n$网格的双单调细分计数算法。最后,我们证明了$m × n$网格的所有双单调三角剖分都是由翻转连接的。这就产生了一种算法,用于计算$m × n$网格的双单调(和总)三角剖分的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimonotone subdivisions of point configurations in the plane
Bimonotone subdivisions in two dimensions are subdivisions all of whose sides are either vertical or have nonnegative slope. They correspond to statistical estimates of probability distributions of strongly positively dependent random variables. The number of bimonotone subdivisions compared to the total number of subdivisions of a point configuration provides insight into how often the random variables are positively dependent. We give recursions as well as formulas for the numbers of bimonotone and total subdivisions of $2\times n$ grid configurations in the plane. Furthermore, we connect the former to the large Schroder numbers. We also show that the numbers of bimonotone and total subdivisions of a $2\times n$ grid are asymptotically equal. We then provide algorithms for counting bimonotone subdivisions for any $m \times n$ grid. Finally, we prove that all bimonotone triangulations of an $m \times n$ grid are connected by flips. This gives rise to an algorithm for counting the number of bimonotone (and total) triangulations of an $m\times n$ grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信