用于中高级特征学习的自适应反卷积网络

Matthew D. Zeiler, Graham W. Taylor, R. Fergus
{"title":"用于中高级特征学习的自适应反卷积网络","authors":"Matthew D. Zeiler, Graham W. Taylor, R. Fergus","doi":"10.1109/ICCV.2011.6126474","DOIUrl":null,"url":null,"abstract":"We present a hierarchical model that learns image decompositions via alternating layers of convolutional sparse coding and max pooling. When trained on natural images, the layers of our model capture image information in a variety of forms: low-level edges, mid-level edge junctions, high-level object parts and complete objects. To build our model we rely on a novel inference scheme that ensures each layer reconstructs the input, rather than just the output of the layer directly beneath, as is common with existing hierarchical approaches. This makes it possible to learn multiple layers of representation and we show models with 4 layers, trained on images from the Caltech-101 and 256 datasets. When combined with a standard classifier, features extracted from these models outperform SIFT, as well as representations from other feature learning methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"3 1","pages":"2018-2025"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1182","resultStr":"{\"title\":\"Adaptive deconvolutional networks for mid and high level feature learning\",\"authors\":\"Matthew D. Zeiler, Graham W. Taylor, R. Fergus\",\"doi\":\"10.1109/ICCV.2011.6126474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a hierarchical model that learns image decompositions via alternating layers of convolutional sparse coding and max pooling. When trained on natural images, the layers of our model capture image information in a variety of forms: low-level edges, mid-level edge junctions, high-level object parts and complete objects. To build our model we rely on a novel inference scheme that ensures each layer reconstructs the input, rather than just the output of the layer directly beneath, as is common with existing hierarchical approaches. This makes it possible to learn multiple layers of representation and we show models with 4 layers, trained on images from the Caltech-101 and 256 datasets. When combined with a standard classifier, features extracted from these models outperform SIFT, as well as representations from other feature learning methods.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"3 1\",\"pages\":\"2018-2025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1182\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1182

摘要

我们提出了一个分层模型,该模型通过卷积稀疏编码和最大池化交替层来学习图像分解。当在自然图像上训练时,我们模型的层以各种形式捕获图像信息:低级边缘,中级边缘连接,高级对象部分和完整对象。为了构建我们的模型,我们依赖于一种新的推理方案,该方案确保每一层重建输入,而不仅仅是直接在下一层的输出,就像现有的分层方法一样。这使得学习多层表示成为可能,我们展示了4层的模型,这些模型是在来自Caltech-101和256数据集的图像上训练的。当与标准分类器结合使用时,从这些模型中提取的特征优于SIFT,也优于其他特征学习方法的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive deconvolutional networks for mid and high level feature learning
We present a hierarchical model that learns image decompositions via alternating layers of convolutional sparse coding and max pooling. When trained on natural images, the layers of our model capture image information in a variety of forms: low-level edges, mid-level edge junctions, high-level object parts and complete objects. To build our model we rely on a novel inference scheme that ensures each layer reconstructs the input, rather than just the output of the layer directly beneath, as is common with existing hierarchical approaches. This makes it possible to learn multiple layers of representation and we show models with 4 layers, trained on images from the Caltech-101 and 256 datasets. When combined with a standard classifier, features extracted from these models outperform SIFT, as well as representations from other feature learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信