{"title":"与指数函数相关的星型函数的多数化问题","authors":"H. Mahzoon","doi":"10.24193/subbmath.2022.4.05","DOIUrl":null,"url":null,"abstract":"\"Let $\\mathcal{S}^*_e$ and $\\mathcal{S}^*_B$ denote the class of analytic functions $f$ in the open unit disc normalized by $f(0)=0=f'(0)-1$ and satisfying, respectively, the following subordination relations: $$ \\frac{zf'(z)}{f(z)}\\prec e^z\\quad{\\rm and}\\quad\\frac{zf'(z)}{f(z)}\\prec e^{e^z-1}.$$ In this article, we investigate majorization problems for the classes $\\mathcal{S}^*_e$ and $\\mathcal{S}^*_B$ without acting upon any linear or nonlinear operators.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Majorization problems for certain starlike functions associated with the exponential function\",\"authors\":\"H. Mahzoon\",\"doi\":\"10.24193/subbmath.2022.4.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Let $\\\\mathcal{S}^*_e$ and $\\\\mathcal{S}^*_B$ denote the class of analytic functions $f$ in the open unit disc normalized by $f(0)=0=f'(0)-1$ and satisfying, respectively, the following subordination relations: $$ \\\\frac{zf'(z)}{f(z)}\\\\prec e^z\\\\quad{\\\\rm and}\\\\quad\\\\frac{zf'(z)}{f(z)}\\\\prec e^{e^z-1}.$$ In this article, we investigate majorization problems for the classes $\\\\mathcal{S}^*_e$ and $\\\\mathcal{S}^*_B$ without acting upon any linear or nonlinear operators.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.4.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.4.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Majorization problems for certain starlike functions associated with the exponential function
"Let $\mathcal{S}^*_e$ and $\mathcal{S}^*_B$ denote the class of analytic functions $f$ in the open unit disc normalized by $f(0)=0=f'(0)-1$ and satisfying, respectively, the following subordination relations: $$ \frac{zf'(z)}{f(z)}\prec e^z\quad{\rm and}\quad\frac{zf'(z)}{f(z)}\prec e^{e^z-1}.$$ In this article, we investigate majorization problems for the classes $\mathcal{S}^*_e$ and $\mathcal{S}^*_B$ without acting upon any linear or nonlinear operators."