数字不确定性量化的合成数据集:为未来的研究人员提出数据集

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS
H. M. D. Kabir, Moloud Abdar, A. Khosravi, D. Nahavandi, S. Mondal, Sadia Khanam, Shady M. K. Mohamed, D. Srinivasan, Saeid Nahavandi, P. N. Suganthan
{"title":"数字不确定性量化的合成数据集:为未来的研究人员提出数据集","authors":"H. M. D. Kabir, Moloud Abdar, A. Khosravi, D. Nahavandi, S. Mondal, Sadia Khanam, Shady M. K. Mohamed, D. Srinivasan, Saeid Nahavandi, P. N. Suganthan","doi":"10.1109/MSMC.2022.3218423","DOIUrl":null,"url":null,"abstract":"In this article, we propose ten synthetic datasets for point prediction and numeric uncertainty quantification (UQ). These datasets are split into the train, validation, and test sets for model benchmarking. Equations and the description of each dataset are provided in detail. We also present representative shallow neural network (NN) training and random vector functional link (RVFL) training examples both of which are training models for the point prediction. We perform UQ with the consideration of a Gaussian and homoscedastic distribution. Distribution considerations and models are made quite simple for the following reasons: 1) much room exists for further explorations and improvements, 2) users of the dataset have simple training examples including the process of accessing data, and 3) users get an idea of probable result and the format of the result. The dataset and scripts are available at the following link: https://github.com/dipuk0506/UQ-Data.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"39 1","pages":"39-48"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthetic Datasets for Numeric Uncertainty Quantification: Proposing Datasets for Future Researchers\",\"authors\":\"H. M. D. Kabir, Moloud Abdar, A. Khosravi, D. Nahavandi, S. Mondal, Sadia Khanam, Shady M. K. Mohamed, D. Srinivasan, Saeid Nahavandi, P. N. Suganthan\",\"doi\":\"10.1109/MSMC.2022.3218423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose ten synthetic datasets for point prediction and numeric uncertainty quantification (UQ). These datasets are split into the train, validation, and test sets for model benchmarking. Equations and the description of each dataset are provided in detail. We also present representative shallow neural network (NN) training and random vector functional link (RVFL) training examples both of which are training models for the point prediction. We perform UQ with the consideration of a Gaussian and homoscedastic distribution. Distribution considerations and models are made quite simple for the following reasons: 1) much room exists for further explorations and improvements, 2) users of the dataset have simple training examples including the process of accessing data, and 3) users get an idea of probable result and the format of the result. The dataset and scripts are available at the following link: https://github.com/dipuk0506/UQ-Data.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"39 1\",\"pages\":\"39-48\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMC.2022.3218423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2022.3218423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了10个用于点预测和数值不确定性量化(UQ)的综合数据集。这些数据集被分成训练集、验证集和测试集,用于模型基准测试。详细给出了方程和每个数据集的描述。我们还给出了具有代表性的浅层神经网络(NN)训练和随机向量函数链接(RVFL)训练实例,这两种训练模型都是用于点预测的训练模型。我们在考虑高斯分布和均方差分布的情况下执行UQ。分布考虑和模型非常简单,原因如下:1)进一步探索和改进的空间很大;2)数据集的用户有简单的训练示例,包括访问数据的过程;3)用户对可能的结果和结果的格式有一个概念。数据集和脚本可从以下链接获得:https://github.com/dipuk0506/UQ-Data。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Datasets for Numeric Uncertainty Quantification: Proposing Datasets for Future Researchers
In this article, we propose ten synthetic datasets for point prediction and numeric uncertainty quantification (UQ). These datasets are split into the train, validation, and test sets for model benchmarking. Equations and the description of each dataset are provided in detail. We also present representative shallow neural network (NN) training and random vector functional link (RVFL) training examples both of which are training models for the point prediction. We perform UQ with the consideration of a Gaussian and homoscedastic distribution. Distribution considerations and models are made quite simple for the following reasons: 1) much room exists for further explorations and improvements, 2) users of the dataset have simple training examples including the process of accessing data, and 3) users get an idea of probable result and the format of the result. The dataset and scripts are available at the following link: https://github.com/dipuk0506/UQ-Data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信