使用混合topsis -替代因子提取方法的稳健ABC库存分类

A. Hadi-Vencheh, P. Wanke, Ali Jamshidi, J. Antunes
{"title":"使用混合topsis -替代因子提取方法的稳健ABC库存分类","authors":"A. Hadi-Vencheh, P. Wanke, Ali Jamshidi, J. Antunes","doi":"10.1142/s0219622022500729","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust ABC classification for inventories using a hybrid technique for order of preference by similarity to ideal solution-alternative factor extraction approach (TOPSIS-AFEA) as the cornerstone method to calculate and rank importance scores for each item in stock. This is done to mitigate multicollinearity that may exist among different inventory criteria, which artificially inflates total data variance. Besides, and differently from previous research, information reliability techniques such as information entropy and gray relational analysis (GRA) are used as an auxiliary tool to differentiate alternative ABC methods proposed in the literature in terms of the principle of maximal entropy. This principle states that the probability distribution that best represents the current state of knowledge given prior data is the one with largest entropy. Results suggest that the proposed robust TOPSIS-AFEA provides an adequate representation of score ranks that may be computed on different datasets by using existing alternative ABC inventory classification models.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"34 1","pages":"1371-1402"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust ABC Inventory Classification Using Hybrid TOPSIS-Alternative Factor Extraction Approaches\",\"authors\":\"A. Hadi-Vencheh, P. Wanke, Ali Jamshidi, J. Antunes\",\"doi\":\"10.1142/s0219622022500729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust ABC classification for inventories using a hybrid technique for order of preference by similarity to ideal solution-alternative factor extraction approach (TOPSIS-AFEA) as the cornerstone method to calculate and rank importance scores for each item in stock. This is done to mitigate multicollinearity that may exist among different inventory criteria, which artificially inflates total data variance. Besides, and differently from previous research, information reliability techniques such as information entropy and gray relational analysis (GRA) are used as an auxiliary tool to differentiate alternative ABC methods proposed in the literature in terms of the principle of maximal entropy. This principle states that the probability distribution that best represents the current state of knowledge given prior data is the one with largest entropy. Results suggest that the proposed robust TOPSIS-AFEA provides an adequate representation of score ranks that may be computed on different datasets by using existing alternative ABC inventory classification models.\",\"PeriodicalId\":13527,\"journal\":{\"name\":\"Int. J. Inf. Technol. Decis. Mak.\",\"volume\":\"34 1\",\"pages\":\"1371-1402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Decis. Mak.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219622022500729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622022500729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种鲁棒的ABC分类方法,使用一种混合技术,以理想解决方案-替代因素提取方法(TOPSIS-AFEA)的相似性为优先顺序,作为计算库存中每个项目的重要性分数和排名的基础方法。这样做是为了减轻不同库存标准之间可能存在的多重共线性,这种共线性人为地夸大了总数据方差。此外,与以往研究不同的是,本文将信息熵和灰色关联分析(GRA)等信息可靠性技术作为辅助工具,根据最大熵原理对文献中提出的ABC方法进行区分。该原理指出,在给定先验数据的情况下,最能代表知识当前状态的概率分布是具有最大熵的概率分布。结果表明,所提出的鲁棒性TOPSIS-AFEA提供了一个足够的分数排名表示,可以通过使用现有的替代ABC库存分类模型在不同的数据集上计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust ABC Inventory Classification Using Hybrid TOPSIS-Alternative Factor Extraction Approaches
In this paper, we propose a robust ABC classification for inventories using a hybrid technique for order of preference by similarity to ideal solution-alternative factor extraction approach (TOPSIS-AFEA) as the cornerstone method to calculate and rank importance scores for each item in stock. This is done to mitigate multicollinearity that may exist among different inventory criteria, which artificially inflates total data variance. Besides, and differently from previous research, information reliability techniques such as information entropy and gray relational analysis (GRA) are used as an auxiliary tool to differentiate alternative ABC methods proposed in the literature in terms of the principle of maximal entropy. This principle states that the probability distribution that best represents the current state of knowledge given prior data is the one with largest entropy. Results suggest that the proposed robust TOPSIS-AFEA provides an adequate representation of score ranks that may be computed on different datasets by using existing alternative ABC inventory classification models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信