具有圆形定义曲线的尺度边界有限元法在地球力学中的应用

N. V. Chung
{"title":"具有圆形定义曲线的尺度边界有限元法在地球力学中的应用","authors":"N. V. Chung","doi":"10.31814/stce.nuce2019-13(3)-12","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient and accurate numerical technique based upon the scaled boundary finite element method for the analysis of two-dimensional, linear, second-order, boundary value problems with the domain completely described by a circular defining curve. The scaled boundary finite element formulation is established in a general framework allowing single-field and multi-field problems, bounded and unbounded bodies, distributed body source, and general boundary conditions to be treated in a unified fashion. The conventional polar coordinates together with a properly selected scaling center are utilized to achieve the exact description of the circular defining curve, exact geometry of the domain, and exact spatial differential operators. The computational performance of the implemented procedure is then fully investigated for various scenarios within the context of geo-mechanics applications. \nKeywords: \nexact geometry; geo-mechanics; multi-field problems; SBFEM; scaled boundary coordinates.","PeriodicalId":17004,"journal":{"name":"Journal of Science and Technology in Civil Engineering (STCE) - NUCE","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scaled boundary finite element method with circular defining curve for geo-mechanics applications\",\"authors\":\"N. V. Chung\",\"doi\":\"10.31814/stce.nuce2019-13(3)-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient and accurate numerical technique based upon the scaled boundary finite element method for the analysis of two-dimensional, linear, second-order, boundary value problems with the domain completely described by a circular defining curve. The scaled boundary finite element formulation is established in a general framework allowing single-field and multi-field problems, bounded and unbounded bodies, distributed body source, and general boundary conditions to be treated in a unified fashion. The conventional polar coordinates together with a properly selected scaling center are utilized to achieve the exact description of the circular defining curve, exact geometry of the domain, and exact spatial differential operators. The computational performance of the implemented procedure is then fully investigated for various scenarios within the context of geo-mechanics applications. \\nKeywords: \\nexact geometry; geo-mechanics; multi-field problems; SBFEM; scaled boundary coordinates.\",\"PeriodicalId\":17004,\"journal\":{\"name\":\"Journal of Science and Technology in Civil Engineering (STCE) - NUCE\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology in Civil Engineering (STCE) - NUCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31814/stce.nuce2019-13(3)-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology in Civil Engineering (STCE) - NUCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31814/stce.nuce2019-13(3)-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于比例边界有限元法的高效、精确的数值计算方法,用于分析完全由圆形定义曲线描述的二维、线性、二阶边值问题。尺度边界有限元公式是在一般框架下建立的,允许以统一的方式处理单场和多场问题、有界和无界体、分布体源和一般边界条件。利用传统的极坐标和适当选择的标度中心来实现圆定义曲线的精确描述、域的精确几何形状和精确的空间微分算子。然后,在地球力学应用的背景下,对实现过程的计算性能进行了充分的研究。关键词:精确几何;geo-mechanics;多领域问题;SBFEM;缩放的边界坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaled boundary finite element method with circular defining curve for geo-mechanics applications
This paper presents an efficient and accurate numerical technique based upon the scaled boundary finite element method for the analysis of two-dimensional, linear, second-order, boundary value problems with the domain completely described by a circular defining curve. The scaled boundary finite element formulation is established in a general framework allowing single-field and multi-field problems, bounded and unbounded bodies, distributed body source, and general boundary conditions to be treated in a unified fashion. The conventional polar coordinates together with a properly selected scaling center are utilized to achieve the exact description of the circular defining curve, exact geometry of the domain, and exact spatial differential operators. The computational performance of the implemented procedure is then fully investigated for various scenarios within the context of geo-mechanics applications. Keywords: exact geometry; geo-mechanics; multi-field problems; SBFEM; scaled boundary coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信