混湿碳酸盐岩近混相WAG岩心驱油实验研究及历史拟合

M. E. El Faidouzi
{"title":"混湿碳酸盐岩近混相WAG岩心驱油实验研究及历史拟合","authors":"M. E. El Faidouzi","doi":"10.2118/206307-ms","DOIUrl":null,"url":null,"abstract":"\n Water-alternating-gas (WAG) injection, both miscible and immiscible, is a widely used enhanced oil recovery method with over 80 field cases. Despite its prevalence, the numerical modeling of the physical processes involved remains poorly understood, and existing models often lack predictability. Part of the complexity stems from the component exchange between gas and oil and the hysteretic relative permeability effects. Thus, improving the reliability of numerical models requires the calibration of the equation of state (EOS) against phase behavior data from swelling/extraction and slim-tube tests, and the calibration of the three-phase relative permeability model against WAG coreflood experiments.\n This paper presents the results and interpretation of a complete set of two-phase and thee-phase displacement experiments on mixed-wet carbonate rocks. The three-phase WAG experiments were conducted on the same composite core at near-miscible reservoir condition; experiments differ in the injection order and length of their injection cycles.\n First, the two-phase water/oil and gas/oil displacement experiments and first cycles of WAG were used to estimate the two-phase relative permeabilities. Then, a history matching procedure over the full set of WAG cycles was carried out to tune the Larsen and Skauge WAG hysteresis model—namely the Land gas trapping parameter, the gas reduction exponent, the residual oil reduction factor and three-phase water relative permeability.\n The second part of this paper is dedicated to the value of information (VOI) analysis of the coreflood work program to assist the decision to proceed with a capital intensive WAG pilot at an offshore oilfield. Stochastic simulation of WAG injection using a fine scale sector model allowed to quantify the reduction in the range of uncertainty of key metrics—such as oil recovery, peak gas production and injectivity—linked with the additional SCAL information.\n The current study highlights the impact of the WAG injection sequence on the oil recovery and trapping mechanism. In addition, it is shown that the relative permeabilities and hysteresis model calibrated on one particular set of injection cycles fail to capture the WAG performance when the injection cycles are altered. Finally, the VOI methodology demonstrated the value enhancement from the coreflood work program.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study and History Match of Near-Miscible WAG Coreflood Experiments on Mixed-Wet Carbonate Rocks\",\"authors\":\"M. E. El Faidouzi\",\"doi\":\"10.2118/206307-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Water-alternating-gas (WAG) injection, both miscible and immiscible, is a widely used enhanced oil recovery method with over 80 field cases. Despite its prevalence, the numerical modeling of the physical processes involved remains poorly understood, and existing models often lack predictability. Part of the complexity stems from the component exchange between gas and oil and the hysteretic relative permeability effects. Thus, improving the reliability of numerical models requires the calibration of the equation of state (EOS) against phase behavior data from swelling/extraction and slim-tube tests, and the calibration of the three-phase relative permeability model against WAG coreflood experiments.\\n This paper presents the results and interpretation of a complete set of two-phase and thee-phase displacement experiments on mixed-wet carbonate rocks. The three-phase WAG experiments were conducted on the same composite core at near-miscible reservoir condition; experiments differ in the injection order and length of their injection cycles.\\n First, the two-phase water/oil and gas/oil displacement experiments and first cycles of WAG were used to estimate the two-phase relative permeabilities. Then, a history matching procedure over the full set of WAG cycles was carried out to tune the Larsen and Skauge WAG hysteresis model—namely the Land gas trapping parameter, the gas reduction exponent, the residual oil reduction factor and three-phase water relative permeability.\\n The second part of this paper is dedicated to the value of information (VOI) analysis of the coreflood work program to assist the decision to proceed with a capital intensive WAG pilot at an offshore oilfield. Stochastic simulation of WAG injection using a fine scale sector model allowed to quantify the reduction in the range of uncertainty of key metrics—such as oil recovery, peak gas production and injectivity—linked with the additional SCAL information.\\n The current study highlights the impact of the WAG injection sequence on the oil recovery and trapping mechanism. In addition, it is shown that the relative permeabilities and hysteresis model calibrated on one particular set of injection cycles fail to capture the WAG performance when the injection cycles are altered. Finally, the VOI methodology demonstrated the value enhancement from the coreflood work program.\",\"PeriodicalId\":10896,\"journal\":{\"name\":\"Day 1 Tue, September 21, 2021\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, September 21, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206307-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206307-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

注水换气(WAG)是一种广泛使用的提高采收率的方法,包括混相和非混相,已有80多个油田实例。尽管它很流行,但对所涉及的物理过程的数值模拟仍然知之甚少,现有模式往往缺乏可预测性。这种复杂性部分源于油气组分的交换和滞后的相对渗透率效应。因此,提高数值模型的可靠性需要根据膨胀/萃取和细管试验的相行为数据校准状态方程(EOS),并根据WAG岩心驱油实验校准三相相对渗透率模型。本文介绍了在混合湿碳酸盐岩上进行的一整套两相和三相驱替实验的结果和解释。在近混相储层条件下,对同一复合岩心进行了三相WAG实验;实验在注射顺序和注射周期的长度上有所不同。首先,利用两相水/油、气/油驱替实验和第一次WAG循环来估算两相相对渗透率。然后,进行了一整套WAG循环的历史匹配程序,以调整Larsen和Skauge WAG滞后模型,即Land气捕获参数、气还原指数、剩余油还原系数和三相水相对渗透率。本文的第二部分致力于对岩心驱油工作方案进行信息价值(VOI)分析,以帮助决定在海上油田进行资本密集型WAG试验。使用精细的扇形模型对WAG注入进行随机模拟,可以量化与额外的SCAL信息相关的关键指标(如采收率、峰值产气量和注入量)的不确定性范围的减少。目前的研究重点是WAG注入顺序对采收率和圈闭机理的影响。此外,研究表明,当注入周期改变时,在一组特定注入周期上校准的相对渗透率和滞后模型无法捕捉到WAG的性能。最后,VOI方法证明了岩心驱油工作方案的价值提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study and History Match of Near-Miscible WAG Coreflood Experiments on Mixed-Wet Carbonate Rocks
Water-alternating-gas (WAG) injection, both miscible and immiscible, is a widely used enhanced oil recovery method with over 80 field cases. Despite its prevalence, the numerical modeling of the physical processes involved remains poorly understood, and existing models often lack predictability. Part of the complexity stems from the component exchange between gas and oil and the hysteretic relative permeability effects. Thus, improving the reliability of numerical models requires the calibration of the equation of state (EOS) against phase behavior data from swelling/extraction and slim-tube tests, and the calibration of the three-phase relative permeability model against WAG coreflood experiments. This paper presents the results and interpretation of a complete set of two-phase and thee-phase displacement experiments on mixed-wet carbonate rocks. The three-phase WAG experiments were conducted on the same composite core at near-miscible reservoir condition; experiments differ in the injection order and length of their injection cycles. First, the two-phase water/oil and gas/oil displacement experiments and first cycles of WAG were used to estimate the two-phase relative permeabilities. Then, a history matching procedure over the full set of WAG cycles was carried out to tune the Larsen and Skauge WAG hysteresis model—namely the Land gas trapping parameter, the gas reduction exponent, the residual oil reduction factor and three-phase water relative permeability. The second part of this paper is dedicated to the value of information (VOI) analysis of the coreflood work program to assist the decision to proceed with a capital intensive WAG pilot at an offshore oilfield. Stochastic simulation of WAG injection using a fine scale sector model allowed to quantify the reduction in the range of uncertainty of key metrics—such as oil recovery, peak gas production and injectivity—linked with the additional SCAL information. The current study highlights the impact of the WAG injection sequence on the oil recovery and trapping mechanism. In addition, it is shown that the relative permeabilities and hysteresis model calibrated on one particular set of injection cycles fail to capture the WAG performance when the injection cycles are altered. Finally, the VOI methodology demonstrated the value enhancement from the coreflood work program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信