Besse和Zoll Reeb流的谱特征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Viktor L. Ginzburg , Başak Z. Gürel , Marco Mazzucchelli
{"title":"Besse和Zoll Reeb流的谱特征","authors":"Viktor L. Ginzburg ,&nbsp;Başak Z. Gürel ,&nbsp;Marco Mazzucchelli","doi":"10.1016/j.anihpc.2020.08.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian </span>unit tangent bundles in terms of </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.08.004","citationCount":"9","resultStr":"{\"title\":\"On the spectral characterization of Besse and Zoll Reeb flows\",\"authors\":\"Viktor L. Ginzburg ,&nbsp;Başak Z. Gürel ,&nbsp;Marco Mazzucchelli\",\"doi\":\"10.1016/j.anihpc.2020.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian </span>unit tangent bundles in terms of </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.08.004\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920300767\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300767","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

当一个闭合接触流形的所有Reeb轨道都闭合时,它被称为Besse,当它们具有相同的最小周期时,它被称为Zoll。本文用s1等变谱不变量给出了凸接触球和黎曼单位切线束的贝塞接触形式的表征。此外,对于辛向量空间的受限接触型超曲面,我们通过Ekeland-Hofer能力给出了Besse性质的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the spectral characterization of Besse and Zoll Reeb flows

A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent bundles in terms of S1-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信