Viktor L. Ginzburg , Başak Z. Gürel , Marco Mazzucchelli
{"title":"Besse和Zoll Reeb流的谱特征","authors":"Viktor L. Ginzburg , Başak Z. Gürel , Marco Mazzucchelli","doi":"10.1016/j.anihpc.2020.08.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian </span>unit tangent bundles in terms of </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.08.004","citationCount":"9","resultStr":"{\"title\":\"On the spectral characterization of Besse and Zoll Reeb flows\",\"authors\":\"Viktor L. Ginzburg , Başak Z. Gürel , Marco Mazzucchelli\",\"doi\":\"10.1016/j.anihpc.2020.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian </span>unit tangent bundles in terms of </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.08.004\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920300767\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300767","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the spectral characterization of Besse and Zoll Reeb flows
A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent bundles in terms of -equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.