{"title":"比特币收益波动的非线性分析与预测","authors":"T. Yin, Yiming Wang","doi":"10.15240/tul/001/2022-2-007","DOIUrl":null,"url":null,"abstract":"This paper mainly studies the market nonlinearity and the prediction model based on the intrinsic generation mechanism (chaos) of Bitcoin’s daily return’s volatility from June 27, 2013 to November 7, 2019 with an econophysics perspective, so as to avoid the forecasting model misspecification. Firstly, this paper studies the multifractal and chaotic nonlinear characteristics of Bitcoin volatility by using multifractal detrended fluctuation analysis (MFDFA) and largest Lyapunov exponent (LLE) methods. Then, from the perspective of nonlinearity, the measured values of multifractal and chaos show that the volatility of Bitcoin has short-term predictability. The study of chaos and multifractal dynamics in nonlinear systems is very important in terms of their predictability. The chaos signals may have short-term predictability, while multifractals and self-similarity can increase the likelihood of accurately predicting future sequences of these signals. Finally, we constructed a number of chaotic artificial neural network models to forecast the Bitcoin return’s volatility avoiding the model misspecification. The results show that chaotic artificial neural network models have good prediction effect by comparing these models with the existing Artificial Neural Network (ANN) models. This is because the chaotic artificial neural network models can extract hidden patterns and accurately model time series from potential signals, while the benchmark ANN models are based on Gaussian kernel local approximation of non-stationary signals, so they cannot approach the global model with chaotic characteristics. At the same time, the multifractal parameters are further mined to obtain more market information to guide financial practice. These above findings matter for investors (especially for investors in quantitative trading) as well as effective supervision of financial institutions by government.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NONLINEAR ANALYSIS AND PREDICTION OF BITCOIN RETURN’S VOLATILITY\",\"authors\":\"T. Yin, Yiming Wang\",\"doi\":\"10.15240/tul/001/2022-2-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper mainly studies the market nonlinearity and the prediction model based on the intrinsic generation mechanism (chaos) of Bitcoin’s daily return’s volatility from June 27, 2013 to November 7, 2019 with an econophysics perspective, so as to avoid the forecasting model misspecification. Firstly, this paper studies the multifractal and chaotic nonlinear characteristics of Bitcoin volatility by using multifractal detrended fluctuation analysis (MFDFA) and largest Lyapunov exponent (LLE) methods. Then, from the perspective of nonlinearity, the measured values of multifractal and chaos show that the volatility of Bitcoin has short-term predictability. The study of chaos and multifractal dynamics in nonlinear systems is very important in terms of their predictability. The chaos signals may have short-term predictability, while multifractals and self-similarity can increase the likelihood of accurately predicting future sequences of these signals. Finally, we constructed a number of chaotic artificial neural network models to forecast the Bitcoin return’s volatility avoiding the model misspecification. The results show that chaotic artificial neural network models have good prediction effect by comparing these models with the existing Artificial Neural Network (ANN) models. This is because the chaotic artificial neural network models can extract hidden patterns and accurately model time series from potential signals, while the benchmark ANN models are based on Gaussian kernel local approximation of non-stationary signals, so they cannot approach the global model with chaotic characteristics. At the same time, the multifractal parameters are further mined to obtain more market information to guide financial practice. These above findings matter for investors (especially for investors in quantitative trading) as well as effective supervision of financial institutions by government.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.15240/tul/001/2022-2-007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.15240/tul/001/2022-2-007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NONLINEAR ANALYSIS AND PREDICTION OF BITCOIN RETURN’S VOLATILITY
This paper mainly studies the market nonlinearity and the prediction model based on the intrinsic generation mechanism (chaos) of Bitcoin’s daily return’s volatility from June 27, 2013 to November 7, 2019 with an econophysics perspective, so as to avoid the forecasting model misspecification. Firstly, this paper studies the multifractal and chaotic nonlinear characteristics of Bitcoin volatility by using multifractal detrended fluctuation analysis (MFDFA) and largest Lyapunov exponent (LLE) methods. Then, from the perspective of nonlinearity, the measured values of multifractal and chaos show that the volatility of Bitcoin has short-term predictability. The study of chaos and multifractal dynamics in nonlinear systems is very important in terms of their predictability. The chaos signals may have short-term predictability, while multifractals and self-similarity can increase the likelihood of accurately predicting future sequences of these signals. Finally, we constructed a number of chaotic artificial neural network models to forecast the Bitcoin return’s volatility avoiding the model misspecification. The results show that chaotic artificial neural network models have good prediction effect by comparing these models with the existing Artificial Neural Network (ANN) models. This is because the chaotic artificial neural network models can extract hidden patterns and accurately model time series from potential signals, while the benchmark ANN models are based on Gaussian kernel local approximation of non-stationary signals, so they cannot approach the global model with chaotic characteristics. At the same time, the multifractal parameters are further mined to obtain more market information to guide financial practice. These above findings matter for investors (especially for investors in quantitative trading) as well as effective supervision of financial institutions by government.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.