一种新的扩展幂-洛max分布用于真实数据建模:性质和推理

IF 0.7 Q2 MATHEMATICS
Maha E. Qura, Mohammed Alqawba, Mashail M. Al Sobhi, A. Afify
{"title":"一种新的扩展幂-洛max分布用于真实数据建模:性质和推理","authors":"Maha E. Qura, Mohammed Alqawba, Mashail M. Al Sobhi, A. Afify","doi":"10.1155/2023/6661792","DOIUrl":null,"url":null,"abstract":"One of the important features of generalized distribution is its ability and flexibility to model real-life data in several applied fields such as medicine, engineering, and survival analysis, among others. In this paper, a flexible four-parameter Lomax extension called the alpha-power power-Lomax (APPLx) distribution is introduced. The APPLx distribution is analytically tractable, and it can be used quite effectively for real-life data analysis. Key mathematical properties of the APPLx distribution including mode, moments, stress-strength reliability, quantile and generating functions, and order statistics are presented. The APPEx parameters are estimated by using eight classical estimation methods. Extensive simulation studies are provided to explore the performance of the proposed estimation methods and to provide a guideline for practitioners and engineers to choose the best estimation method. Three real-life datasets from applied fields are fitted to assess empirically the flexibility of the APPLx distribution. The APPLx distribution shows greater flexibility as compared to the McDonal–Lomax, Fréchet Topp–Leone Lomax, transmuted Weibull–Lomax, Kumaraswamy–Lomax, beta exponentiated-Lomax, Weibull–Lomax, Burr-X Lomax, Lomax–Weibull, odd exponentiated half-logistic Lomax, and alpha-power Lomax distributions.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Extended Power-Lomax Distribution for Modeling Real-Life Data: Properties and Inference\",\"authors\":\"Maha E. Qura, Mohammed Alqawba, Mashail M. Al Sobhi, A. Afify\",\"doi\":\"10.1155/2023/6661792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the important features of generalized distribution is its ability and flexibility to model real-life data in several applied fields such as medicine, engineering, and survival analysis, among others. In this paper, a flexible four-parameter Lomax extension called the alpha-power power-Lomax (APPLx) distribution is introduced. The APPLx distribution is analytically tractable, and it can be used quite effectively for real-life data analysis. Key mathematical properties of the APPLx distribution including mode, moments, stress-strength reliability, quantile and generating functions, and order statistics are presented. The APPEx parameters are estimated by using eight classical estimation methods. Extensive simulation studies are provided to explore the performance of the proposed estimation methods and to provide a guideline for practitioners and engineers to choose the best estimation method. Three real-life datasets from applied fields are fitted to assess empirically the flexibility of the APPLx distribution. The APPLx distribution shows greater flexibility as compared to the McDonal–Lomax, Fréchet Topp–Leone Lomax, transmuted Weibull–Lomax, Kumaraswamy–Lomax, beta exponentiated-Lomax, Weibull–Lomax, Burr-X Lomax, Lomax–Weibull, odd exponentiated half-logistic Lomax, and alpha-power Lomax distributions.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6661792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6661792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

广义分布的一个重要特征是它在医学、工程和生存分析等多个应用领域对真实数据建模的能力和灵活性。本文介绍了一种灵活的四参数Lomax扩展,称为alpha-power -Lomax (APPLx)分布。APPLx分布在分析上是可处理的,它可以非常有效地用于实际数据分析。给出了APPLx分布的关键数学性质,包括模态、矩量、应力-强度可靠性、分位数和生成函数以及阶数统计量。利用八种经典的估计方法对APPEx参数进行估计。本文提供了广泛的仿真研究,以探索所提出的估计方法的性能,并为从业者和工程师选择最佳估计方法提供指导。拟合了来自应用领域的三个实际数据集,以经验评估APPLx分布的灵活性。与mcdonald -Lomax、fr - Topp-Leone Lomax、变形Weibull-Lomax、Kumaraswamy-Lomax、beta指数-Lomax、Weibull-Lomax、Burr-X Lomax、Lomax - weibull、奇指数半logistic Lomax和alpha-power Lomax分布相比,APPLx分布具有更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Extended Power-Lomax Distribution for Modeling Real-Life Data: Properties and Inference
One of the important features of generalized distribution is its ability and flexibility to model real-life data in several applied fields such as medicine, engineering, and survival analysis, among others. In this paper, a flexible four-parameter Lomax extension called the alpha-power power-Lomax (APPLx) distribution is introduced. The APPLx distribution is analytically tractable, and it can be used quite effectively for real-life data analysis. Key mathematical properties of the APPLx distribution including mode, moments, stress-strength reliability, quantile and generating functions, and order statistics are presented. The APPEx parameters are estimated by using eight classical estimation methods. Extensive simulation studies are provided to explore the performance of the proposed estimation methods and to provide a guideline for practitioners and engineers to choose the best estimation method. Three real-life datasets from applied fields are fitted to assess empirically the flexibility of the APPLx distribution. The APPLx distribution shows greater flexibility as compared to the McDonal–Lomax, Fréchet Topp–Leone Lomax, transmuted Weibull–Lomax, Kumaraswamy–Lomax, beta exponentiated-Lomax, Weibull–Lomax, Burr-X Lomax, Lomax–Weibull, odd exponentiated half-logistic Lomax, and alpha-power Lomax distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信