体位性震颤减震器设计的生物力学上肢模型

S. Gebai, G. Cumunel, M. Hammoud, G. Foret, Emmanuel Roze, Elodie Hainque
{"title":"体位性震颤减震器设计的生物力学上肢模型","authors":"S. Gebai, G. Cumunel, M. Hammoud, G. Foret, Emmanuel Roze, Elodie Hainque","doi":"10.3390/dynamics2030012","DOIUrl":null,"url":null,"abstract":"The current work promotes the use of non-invasive devices for reducing involuntary tremor of human upper limb. It concentrates on building up an upper limb model used to reflect the measured tremor signal and is suitable for the design of a passive vibration controller. A dynamic model of the upper limb is excited by the measured electromyography signal scaled to reach the wrist joint angular displacement measured by an inertial measurement unit for a patient with postural tremor. A passive tuned-mass-damper (TMD) placed on the hand is designed as a stainless-steel beam with a length of 91 mm and a cross-sectional diameter of 0.79 mm, holding a mass of 14.13 g. The damping ratio and mass position of the TMD are optimized numerically. The fundamental frequency of the TMD is derived and validated experimentally through measurements for different mass positions, with a relative error of 0.65%. The modal damping ratio of the beam is identified experimentally as 0.14% and increases to 0.26–0.46% after adding the mass at different positions. The optimized three TMDs reduce 97.4% of the critical amplitude of the power spectral density at the wrist joint.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical Upper Limb Model for Postural Tremor Absorber Design\",\"authors\":\"S. Gebai, G. Cumunel, M. Hammoud, G. Foret, Emmanuel Roze, Elodie Hainque\",\"doi\":\"10.3390/dynamics2030012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work promotes the use of non-invasive devices for reducing involuntary tremor of human upper limb. It concentrates on building up an upper limb model used to reflect the measured tremor signal and is suitable for the design of a passive vibration controller. A dynamic model of the upper limb is excited by the measured electromyography signal scaled to reach the wrist joint angular displacement measured by an inertial measurement unit for a patient with postural tremor. A passive tuned-mass-damper (TMD) placed on the hand is designed as a stainless-steel beam with a length of 91 mm and a cross-sectional diameter of 0.79 mm, holding a mass of 14.13 g. The damping ratio and mass position of the TMD are optimized numerically. The fundamental frequency of the TMD is derived and validated experimentally through measurements for different mass positions, with a relative error of 0.65%. The modal damping ratio of the beam is identified experimentally as 0.14% and increases to 0.26–0.46% after adding the mass at different positions. The optimized three TMDs reduce 97.4% of the critical amplitude of the power spectral density at the wrist joint.\",\"PeriodicalId\":80276,\"journal\":{\"name\":\"Dynamics (Pembroke, Ont.)\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics (Pembroke, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics2030012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics2030012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的工作提倡使用非侵入性设备来减少人类上肢的不自主震颤。该方法着重于建立上肢模型来反映实测的振动信号,适用于被动振动控制器的设计。体位性震颤患者的上肢动态模型是由测量到的肌电信号激发而成的,该肌电信号的尺度达到了惯性测量单元测量的手腕关节角位移。放置在手上的被动调谐质量阻尼器(TMD)被设计成一个长度为91毫米,横截面直径为0.79毫米的不锈钢梁,承载14.13克的质量。对TMD的阻尼比和质量位置进行了数值优化。通过对不同质量位置的测量,推导出了TMD的基频,并进行了实验验证,相对误差为0.65%。实验确定梁的模态阻尼比为0.14%,在不同位置增加质量后,梁的模态阻尼比增加到0.26-0.46%。优化后的3种tmd可使腕关节处功率谱密度临界幅值降低97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomechanical Upper Limb Model for Postural Tremor Absorber Design
The current work promotes the use of non-invasive devices for reducing involuntary tremor of human upper limb. It concentrates on building up an upper limb model used to reflect the measured tremor signal and is suitable for the design of a passive vibration controller. A dynamic model of the upper limb is excited by the measured electromyography signal scaled to reach the wrist joint angular displacement measured by an inertial measurement unit for a patient with postural tremor. A passive tuned-mass-damper (TMD) placed on the hand is designed as a stainless-steel beam with a length of 91 mm and a cross-sectional diameter of 0.79 mm, holding a mass of 14.13 g. The damping ratio and mass position of the TMD are optimized numerically. The fundamental frequency of the TMD is derived and validated experimentally through measurements for different mass positions, with a relative error of 0.65%. The modal damping ratio of the beam is identified experimentally as 0.14% and increases to 0.26–0.46% after adding the mass at different positions. The optimized three TMDs reduce 97.4% of the critical amplitude of the power spectral density at the wrist joint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信