具有时间适形导数的boit - leon Pimpinelli方程

IF 2.2 Q1 MATHEMATICS, APPLIED
Kamal Ait Touchent, Z. Hammouch, T. Mekkaoui, Canan Unlu
{"title":"具有时间适形导数的boit - leon Pimpinelli方程","authors":"Kamal Ait Touchent, Z. Hammouch, T. Mekkaoui, Canan Unlu","doi":"10.11121/ijocta.01.2019.00766","DOIUrl":null,"url":null,"abstract":"In this paper, we derive some new soliton solutions to $(2+1)$-Boiti-Leon Pempinelli equations with conformable derivative by using an expansion technique based on the Sinh-Gordon equation. The obtained solutions have different expression such as trigonometric, complex and hyperbolic functions. This powerful and simple technique can be used to investigate solutions of other  nonlinear partial differential equations.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"41 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Boiti-Leon Pimpinelli equations with time-conformable derivative\",\"authors\":\"Kamal Ait Touchent, Z. Hammouch, T. Mekkaoui, Canan Unlu\",\"doi\":\"10.11121/ijocta.01.2019.00766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive some new soliton solutions to $(2+1)$-Boiti-Leon Pempinelli equations with conformable derivative by using an expansion technique based on the Sinh-Gordon equation. The obtained solutions have different expression such as trigonometric, complex and hyperbolic functions. This powerful and simple technique can be used to investigate solutions of other  nonlinear partial differential equations.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2019-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.01.2019.00766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.01.2019.00766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

摘要

本文在Sinh-Gordon方程的基础上,利用展开技术,得到了$(2+1)$- boit - leon Pempinelli方程的一些新的孤子解。得到的解有不同的表达式,如三角函数、复函数和双曲函数。这种强大而简单的技术可以用来研究其他非线性偏微分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Boiti-Leon Pimpinelli equations with time-conformable derivative
In this paper, we derive some new soliton solutions to $(2+1)$-Boiti-Leon Pempinelli equations with conformable derivative by using an expansion technique based on the Sinh-Gordon equation. The obtained solutions have different expression such as trigonometric, complex and hyperbolic functions. This powerful and simple technique can be used to investigate solutions of other  nonlinear partial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信