Ji-Young Kyung, Yo-yong Kim, S. Hwang, Wo-kyung Nam, K. Park, Tae-Hwa Kim
{"title":"SPME/GC-MS分析废水中苯酚与五氯酚方法的比较研究","authors":"Ji-Young Kyung, Yo-yong Kim, S. Hwang, Wo-kyung Nam, K. Park, Tae-Hwa Kim","doi":"10.36278/jeaht.22.3.95","DOIUrl":null,"url":null,"abstract":"The solvent extraction method for the analysis of phenol and pentachlorophenol in the present standard methods for the examination of water pollution is not easy to perform due to the use of a large amount of solvent and long pretreatment time. Therefore, the solid phase microextraction (SPME) method, which does not require an extraction solvent, was used a pretreatment approach and its applicability as an alternative to the conventional solvent extraction method was studied. The SPME conditions of fiber adsorption, concentration of NaCl, adsorption time, stirring speed, and stirrer temperature were optimized.Moreover, we assessed whether these conditions satisfied the QA/QCrequirements of the standard methods. In addition, the recovery test was performed on the effluent, and the test results of the solvent extraction and SPME methods were statistically compared by the paired t-test for phenol and pentachlorophenol analyses. As a result, there was a difference in the results of the two methods for pentachlorophenol. Therefore, the SPME method was not adequate, but phenol was judged to be appropriate as it showed 0.948 μg/L of LOD, 3.020 μg/L of LOQ, 1.8% of precision and 97.7% of accuracy. In addition, the validation test indicated that the recovery of phenol in the effluent was better than 95% by SPME. Moreover, because the paired t-test showed that the SPME method was not different from the solvent extraction method, the SPME method can replace the solvent extraction method for phenol analysis.","PeriodicalId":15758,"journal":{"name":"Journal of Environmental Analysis, Health and Toxicology","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Study of Phenol and Pentachlorophenol Analysis Methods in Wastewater by SPME/GC-MS\",\"authors\":\"Ji-Young Kyung, Yo-yong Kim, S. Hwang, Wo-kyung Nam, K. Park, Tae-Hwa Kim\",\"doi\":\"10.36278/jeaht.22.3.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solvent extraction method for the analysis of phenol and pentachlorophenol in the present standard methods for the examination of water pollution is not easy to perform due to the use of a large amount of solvent and long pretreatment time. Therefore, the solid phase microextraction (SPME) method, which does not require an extraction solvent, was used a pretreatment approach and its applicability as an alternative to the conventional solvent extraction method was studied. The SPME conditions of fiber adsorption, concentration of NaCl, adsorption time, stirring speed, and stirrer temperature were optimized.Moreover, we assessed whether these conditions satisfied the QA/QCrequirements of the standard methods. In addition, the recovery test was performed on the effluent, and the test results of the solvent extraction and SPME methods were statistically compared by the paired t-test for phenol and pentachlorophenol analyses. As a result, there was a difference in the results of the two methods for pentachlorophenol. Therefore, the SPME method was not adequate, but phenol was judged to be appropriate as it showed 0.948 μg/L of LOD, 3.020 μg/L of LOQ, 1.8% of precision and 97.7% of accuracy. In addition, the validation test indicated that the recovery of phenol in the effluent was better than 95% by SPME. Moreover, because the paired t-test showed that the SPME method was not different from the solvent extraction method, the SPME method can replace the solvent extraction method for phenol analysis.\",\"PeriodicalId\":15758,\"journal\":{\"name\":\"Journal of Environmental Analysis, Health and Toxicology\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Analysis, Health and Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36278/jeaht.22.3.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Analysis, Health and Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36278/jeaht.22.3.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study of Phenol and Pentachlorophenol Analysis Methods in Wastewater by SPME/GC-MS
The solvent extraction method for the analysis of phenol and pentachlorophenol in the present standard methods for the examination of water pollution is not easy to perform due to the use of a large amount of solvent and long pretreatment time. Therefore, the solid phase microextraction (SPME) method, which does not require an extraction solvent, was used a pretreatment approach and its applicability as an alternative to the conventional solvent extraction method was studied. The SPME conditions of fiber adsorption, concentration of NaCl, adsorption time, stirring speed, and stirrer temperature were optimized.Moreover, we assessed whether these conditions satisfied the QA/QCrequirements of the standard methods. In addition, the recovery test was performed on the effluent, and the test results of the solvent extraction and SPME methods were statistically compared by the paired t-test for phenol and pentachlorophenol analyses. As a result, there was a difference in the results of the two methods for pentachlorophenol. Therefore, the SPME method was not adequate, but phenol was judged to be appropriate as it showed 0.948 μg/L of LOD, 3.020 μg/L of LOQ, 1.8% of precision and 97.7% of accuracy. In addition, the validation test indicated that the recovery of phenol in the effluent was better than 95% by SPME. Moreover, because the paired t-test showed that the SPME method was not different from the solvent extraction method, the SPME method can replace the solvent extraction method for phenol analysis.