Joel Dowlath, K. Onyeagoro, Elizabeth Sookal, Kevan Quammie, Ashwin Srinivasan
{"title":"我们油田的断层——哥伦布盆地气田的井数和井位","authors":"Joel Dowlath, K. Onyeagoro, Elizabeth Sookal, Kevan Quammie, Ashwin Srinivasan","doi":"10.2118/191226-MS","DOIUrl":null,"url":null,"abstract":"\n The Enterprise gas field is a discovery in Shell's operated acreage in the Columbus Basin off the east coast of Trinidad. It is comprised of two major fault blocks, with an exploration well in the smaller one and an appraisal well in the larger one. The larger fault block is further broken up by minor faults. The potential compartmentalization of this fault block is the major uncertainty in the development of the Enterprise field.\n The development plan called for one or two wells to be drilled in the Enterprise field. Detailed mapping of each of the minor faults and analysis of log and pressure data from the wells was used to determine how well connected the various segments are. Using relationships derived from a global database and Vshale logs from offset wells, a range of fault transmissibility multipliers was derived for each fault based on calculated shale gouge ratios and mapped fault throws.\n Results of the dynamic fault seal analysis were integrated with dynamic simulation and showed that using base case fault transmissibility multipliers, for all segments where there is reservoir-reservoir juxtaposition across the minor faults, there will be connectivity and the larger fault block can be drained by a single development well. Various combinations of well placements were tested against low, base and high case geological realizations and these were used to determine the optimal development scenario for the field.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Faults in our Fields – Well Count and Placement in a Columbus Basin Gas Field\",\"authors\":\"Joel Dowlath, K. Onyeagoro, Elizabeth Sookal, Kevan Quammie, Ashwin Srinivasan\",\"doi\":\"10.2118/191226-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Enterprise gas field is a discovery in Shell's operated acreage in the Columbus Basin off the east coast of Trinidad. It is comprised of two major fault blocks, with an exploration well in the smaller one and an appraisal well in the larger one. The larger fault block is further broken up by minor faults. The potential compartmentalization of this fault block is the major uncertainty in the development of the Enterprise field.\\n The development plan called for one or two wells to be drilled in the Enterprise field. Detailed mapping of each of the minor faults and analysis of log and pressure data from the wells was used to determine how well connected the various segments are. Using relationships derived from a global database and Vshale logs from offset wells, a range of fault transmissibility multipliers was derived for each fault based on calculated shale gouge ratios and mapped fault throws.\\n Results of the dynamic fault seal analysis were integrated with dynamic simulation and showed that using base case fault transmissibility multipliers, for all segments where there is reservoir-reservoir juxtaposition across the minor faults, there will be connectivity and the larger fault block can be drained by a single development well. Various combinations of well placements were tested against low, base and high case geological realizations and these were used to determine the optimal development scenario for the field.\",\"PeriodicalId\":11006,\"journal\":{\"name\":\"Day 3 Wed, June 27, 2018\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, June 27, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191226-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, June 27, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191226-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Faults in our Fields – Well Count and Placement in a Columbus Basin Gas Field
The Enterprise gas field is a discovery in Shell's operated acreage in the Columbus Basin off the east coast of Trinidad. It is comprised of two major fault blocks, with an exploration well in the smaller one and an appraisal well in the larger one. The larger fault block is further broken up by minor faults. The potential compartmentalization of this fault block is the major uncertainty in the development of the Enterprise field.
The development plan called for one or two wells to be drilled in the Enterprise field. Detailed mapping of each of the minor faults and analysis of log and pressure data from the wells was used to determine how well connected the various segments are. Using relationships derived from a global database and Vshale logs from offset wells, a range of fault transmissibility multipliers was derived for each fault based on calculated shale gouge ratios and mapped fault throws.
Results of the dynamic fault seal analysis were integrated with dynamic simulation and showed that using base case fault transmissibility multipliers, for all segments where there is reservoir-reservoir juxtaposition across the minor faults, there will be connectivity and the larger fault block can be drained by a single development well. Various combinations of well placements were tested against low, base and high case geological realizations and these were used to determine the optimal development scenario for the field.