一类由Hadamard积构成的大维随机矩阵的极限特征值行为

Pub Date : 2021-12-08 DOI:10.1142/s2010326322500502
J. W. Silverstein
{"title":"一类由Hadamard积构成的大维随机矩阵的极限特征值行为","authors":"J. W. Silverstein","doi":"10.1142/s2010326322500502","DOIUrl":null,"url":null,"abstract":"This paper investigates the strong limiting behavior of the eigenvalues of the class of matrices 1 N (Dn ◦Xn)(Dn ◦Xn)∗, studied in Girko 2001. Here, Xn = (xij) is an n×N random matrix consisting of independent complex standardized random variables, Dn = (dij), n × N , has nonnegative entries, and ◦ denotes Hadamard (componentwise) product. Results are obtained under assumptions on the entries of Xn and Dn which are different from those in Girko (2001), which include a Lindeberg condition on the entries of Dn ◦Xn, as well as a bound on the average of the rows and columns of Dn ◦ Dn. The present paper separates the assumptions needed on Xn and Dn. It assumes a Lindeberg condition on the entries of Xn, along with a tigntness-like condition on the entries of Dn,","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limiting Eigenvalue Behavior of a Class of Large Dimensional Random Matrices Formed From a Hadamard Product\",\"authors\":\"J. W. Silverstein\",\"doi\":\"10.1142/s2010326322500502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the strong limiting behavior of the eigenvalues of the class of matrices 1 N (Dn ◦Xn)(Dn ◦Xn)∗, studied in Girko 2001. Here, Xn = (xij) is an n×N random matrix consisting of independent complex standardized random variables, Dn = (dij), n × N , has nonnegative entries, and ◦ denotes Hadamard (componentwise) product. Results are obtained under assumptions on the entries of Xn and Dn which are different from those in Girko (2001), which include a Lindeberg condition on the entries of Dn ◦Xn, as well as a bound on the average of the rows and columns of Dn ◦ Dn. The present paper separates the assumptions needed on Xn and Dn. It assumes a Lindeberg condition on the entries of Xn, along with a tigntness-like condition on the entries of Dn,\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一类矩阵1 N (Dn◦Xn)(Dn◦Xn) * (Girko 2001) *的特征值的强极限性。其中,Xn = (xij)是由独立的复标准化随机变量组成的n×N随机矩阵,Dn = (dij), n× n具有非负项,◦表示Hadamard (component - wise)积。结果与Girko(2001)对Xn和Dn表项的假设不同,包括对Dn◦Xn表项的Lindeberg条件,以及对Dn◦Dn的行和列平均值的定界。本文分离了Xn和Dn所需的假设。它假设Xn的元素有林德伯格条件,同时对Dn的元素也有类似紧度的条件,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Limiting Eigenvalue Behavior of a Class of Large Dimensional Random Matrices Formed From a Hadamard Product
This paper investigates the strong limiting behavior of the eigenvalues of the class of matrices 1 N (Dn ◦Xn)(Dn ◦Xn)∗, studied in Girko 2001. Here, Xn = (xij) is an n×N random matrix consisting of independent complex standardized random variables, Dn = (dij), n × N , has nonnegative entries, and ◦ denotes Hadamard (componentwise) product. Results are obtained under assumptions on the entries of Xn and Dn which are different from those in Girko (2001), which include a Lindeberg condition on the entries of Dn ◦Xn, as well as a bound on the average of the rows and columns of Dn ◦ Dn. The present paper separates the assumptions needed on Xn and Dn. It assumes a Lindeberg condition on the entries of Xn, along with a tigntness-like condition on the entries of Dn,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信