Fabio Taioli, M. G. Santos, M. L. Assine, D. Mendes
{"title":"探地雷达如何帮助了解巴西潘塔纳尔湿地的nhecolnindia湖泊景观","authors":"Fabio Taioli, M. G. Santos, M. L. Assine, D. Mendes","doi":"10.1590/2317-4889202120200021","DOIUrl":null,"url":null,"abstract":"The Pantanal wetland is an active sedimentary basin representing a relevant depositional setting for alluvial sedimentation studies. However, sedimentation homogeneity and the lack of outcrops makes sedimentary analysis more difficult. The Lower Nhecolândia is located at the Southern edge of the Taquari river megafan, whose genetic origin has been disputed as fluvial or eolian deposition. GPR analysis was used to characterize the subsurface stratigraphy and understand the region’s geomorphic evolution. The 100 MHz GPR provided continuous good quality sections up to a depth of 8 m. Two continuous reflections are disconformities that bound three depositional sequences characterized by distinct radar facies. The lower facies presents an upper erosional truncation followed by reflections presenting ~1.5 m deep channelized forms and concave-up low amplitude reflections. The intermediate facies (~4 m thick) presents a base with erosional truncation followed by concave-upward forms, ~10 m wide, 1–3 m deep, separated by 1–2 m, and offlapping geometry. The upper facies has a flat base and thickness of 2–4 m, with parallel reflections; it shows a strong correlation between the radar facies and the forms preserved in the landscape, suggesting that channelized fluvial streams did not form them. The results obtained indicate that GPR use in the Pantanal is an important method to elucidate its geologic evolution.","PeriodicalId":9221,"journal":{"name":"Brazilian Journal of Geology","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"How Ground Penetrating Radar helps to understand the Nhecolândia lakes landscape in the Brazilian Pantanal wetland\",\"authors\":\"Fabio Taioli, M. G. Santos, M. L. Assine, D. Mendes\",\"doi\":\"10.1590/2317-4889202120200021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pantanal wetland is an active sedimentary basin representing a relevant depositional setting for alluvial sedimentation studies. However, sedimentation homogeneity and the lack of outcrops makes sedimentary analysis more difficult. The Lower Nhecolândia is located at the Southern edge of the Taquari river megafan, whose genetic origin has been disputed as fluvial or eolian deposition. GPR analysis was used to characterize the subsurface stratigraphy and understand the region’s geomorphic evolution. The 100 MHz GPR provided continuous good quality sections up to a depth of 8 m. Two continuous reflections are disconformities that bound three depositional sequences characterized by distinct radar facies. The lower facies presents an upper erosional truncation followed by reflections presenting ~1.5 m deep channelized forms and concave-up low amplitude reflections. The intermediate facies (~4 m thick) presents a base with erosional truncation followed by concave-upward forms, ~10 m wide, 1–3 m deep, separated by 1–2 m, and offlapping geometry. The upper facies has a flat base and thickness of 2–4 m, with parallel reflections; it shows a strong correlation between the radar facies and the forms preserved in the landscape, suggesting that channelized fluvial streams did not form them. The results obtained indicate that GPR use in the Pantanal is an important method to elucidate its geologic evolution.\",\"PeriodicalId\":9221,\"journal\":{\"name\":\"Brazilian Journal of Geology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1590/2317-4889202120200021\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1590/2317-4889202120200021","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
How Ground Penetrating Radar helps to understand the Nhecolândia lakes landscape in the Brazilian Pantanal wetland
The Pantanal wetland is an active sedimentary basin representing a relevant depositional setting for alluvial sedimentation studies. However, sedimentation homogeneity and the lack of outcrops makes sedimentary analysis more difficult. The Lower Nhecolândia is located at the Southern edge of the Taquari river megafan, whose genetic origin has been disputed as fluvial or eolian deposition. GPR analysis was used to characterize the subsurface stratigraphy and understand the region’s geomorphic evolution. The 100 MHz GPR provided continuous good quality sections up to a depth of 8 m. Two continuous reflections are disconformities that bound three depositional sequences characterized by distinct radar facies. The lower facies presents an upper erosional truncation followed by reflections presenting ~1.5 m deep channelized forms and concave-up low amplitude reflections. The intermediate facies (~4 m thick) presents a base with erosional truncation followed by concave-upward forms, ~10 m wide, 1–3 m deep, separated by 1–2 m, and offlapping geometry. The upper facies has a flat base and thickness of 2–4 m, with parallel reflections; it shows a strong correlation between the radar facies and the forms preserved in the landscape, suggesting that channelized fluvial streams did not form them. The results obtained indicate that GPR use in the Pantanal is an important method to elucidate its geologic evolution.
期刊介绍:
The Brazilian Journal of Geology (BJG) is a quarterly journal published by the Brazilian Geological Society with an electronic open access version that provides an in-ternacional medium for the publication of original scientific work of broad interest concerned with all aspects of the earth sciences in Brazil, South America, and Antarctica, in-cluding oceanic regions adjacent to these regions. The BJG publishes papers with a regional appeal and more than local significance in the fields of mineralogy, petrology, geochemistry, paleontology, sedimentology, stratigraphy, structural geology, tectonics, neotectonics, geophysics applied to geology, volcanology, metallogeny and mineral deposits, marine geology, glaciology, paleoclimatology, geochronology, biostratigraphy, engineering geology, hydrogeology, geological hazards and remote sensing, providing a niche for interdisciplinary work on regional geology and Earth history.
The BJG publishes articles (including review articles), rapid communications, articles with accelerated review processes, editorials, and discussions (brief, objective and concise comments on recent papers published in BJG with replies by authors).
Manuscripts must be written in English. Companion papers will not be accepted.