大数据高级编程中R与分布式线性代数的紧密耦合

Drew Schmidt, G. Ostrouchov, Wei-Chen Chen, Pragneshkumar B. Patel
{"title":"大数据高级编程中R与分布式线性代数的紧密耦合","authors":"Drew Schmidt, G. Ostrouchov, Wei-Chen Chen, Pragneshkumar B. Patel","doi":"10.1109/SC.Companion.2012.113","DOIUrl":null,"url":null,"abstract":"We present a new distributed programming extension of the R programming language. By tightly coupling R to the well-known ScaLAPACK and MPI libraries, we are able to achieve highly scalable implementations of common statistical methods, allowing the user to analyze bigger datasets with R than ever before. Early benchmarks show great optimism for the project and its future.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"14 1","pages":"811-815"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Tight Coupling of R and Distributed Linear Algebra for High-Level Programming with Big Data\",\"authors\":\"Drew Schmidt, G. Ostrouchov, Wei-Chen Chen, Pragneshkumar B. Patel\",\"doi\":\"10.1109/SC.Companion.2012.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new distributed programming extension of the R programming language. By tightly coupling R to the well-known ScaLAPACK and MPI libraries, we are able to achieve highly scalable implementations of common statistical methods, allowing the user to analyze bigger datasets with R than ever before. Early benchmarks show great optimism for the project and its future.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"14 1\",\"pages\":\"811-815\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了R编程语言的一种新的分布式编程扩展。通过将R与著名的ScaLAPACK和MPI库紧密耦合,我们能够实现常见统计方法的高度可扩展实现,允许用户使用R分析比以往更大的数据集。早期的基准测试显示了对项目及其未来的极大乐观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Coupling of R and Distributed Linear Algebra for High-Level Programming with Big Data
We present a new distributed programming extension of the R programming language. By tightly coupling R to the well-known ScaLAPACK and MPI libraries, we are able to achieve highly scalable implementations of common statistical methods, allowing the user to analyze bigger datasets with R than ever before. Early benchmarks show great optimism for the project and its future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信