V. Casseau, Wenbo Zhang, Shrutakeerti Mallikarjun, W. Habashi, Song Gao, A. Karchani
{"title":"HALO3D:高超声速流动模拟的全马赫方法","authors":"V. Casseau, Wenbo Zhang, Shrutakeerti Mallikarjun, W. Habashi, Song Gao, A. Karchani","doi":"10.1080/10618562.2022.2094917","DOIUrl":null,"url":null,"abstract":"This paper presents HALO3D, a CFD code simulating the wide range of Mach numbers a hypervelocity vehicle experiences. HALO3D is composed of (a) a RANS edge-based Finite Element (FE) solver modelling high-velocity thermo-chemical non-equilibrium flows, (b) an electromagnetic interactions solver, (c) an ablation module, (d) a Direct Simulation Monte Carlo (DSMC) solver for the rarefied regime, seamlessly linked to the continuum one, and (e) a powerful automatic mesh optimiser finely capturing the many singular hypersonic flow phenomena. Verification and validation simulations for two- and three-dimensional hypersonic flows over a flat plate, a cylinder, a blunt conical body, re-entry capsules, and a waverider geometry demonstrate accurate aerothermodynamic predictions in a wide range of Knudsen numbers, complex geometries and multiphysics.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"112 1","pages":"187 - 206"},"PeriodicalIF":1.1000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HALO3D: An All-Mach Approach to Hypersonic Flows Simulation\",\"authors\":\"V. Casseau, Wenbo Zhang, Shrutakeerti Mallikarjun, W. Habashi, Song Gao, A. Karchani\",\"doi\":\"10.1080/10618562.2022.2094917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents HALO3D, a CFD code simulating the wide range of Mach numbers a hypervelocity vehicle experiences. HALO3D is composed of (a) a RANS edge-based Finite Element (FE) solver modelling high-velocity thermo-chemical non-equilibrium flows, (b) an electromagnetic interactions solver, (c) an ablation module, (d) a Direct Simulation Monte Carlo (DSMC) solver for the rarefied regime, seamlessly linked to the continuum one, and (e) a powerful automatic mesh optimiser finely capturing the many singular hypersonic flow phenomena. Verification and validation simulations for two- and three-dimensional hypersonic flows over a flat plate, a cylinder, a blunt conical body, re-entry capsules, and a waverider geometry demonstrate accurate aerothermodynamic predictions in a wide range of Knudsen numbers, complex geometries and multiphysics.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"112 1\",\"pages\":\"187 - 206\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2022.2094917\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2094917","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
HALO3D: An All-Mach Approach to Hypersonic Flows Simulation
This paper presents HALO3D, a CFD code simulating the wide range of Mach numbers a hypervelocity vehicle experiences. HALO3D is composed of (a) a RANS edge-based Finite Element (FE) solver modelling high-velocity thermo-chemical non-equilibrium flows, (b) an electromagnetic interactions solver, (c) an ablation module, (d) a Direct Simulation Monte Carlo (DSMC) solver for the rarefied regime, seamlessly linked to the continuum one, and (e) a powerful automatic mesh optimiser finely capturing the many singular hypersonic flow phenomena. Verification and validation simulations for two- and three-dimensional hypersonic flows over a flat plate, a cylinder, a blunt conical body, re-entry capsules, and a waverider geometry demonstrate accurate aerothermodynamic predictions in a wide range of Knudsen numbers, complex geometries and multiphysics.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.