{"title":"纳米涂料辅助电磁清管在管道和生产油管中的应用","authors":"Ningyu Wang, M. Prodanović, H. Daigle","doi":"10.2118/196112-ms","DOIUrl":null,"url":null,"abstract":"\n Precipitation and deposition of paraffin wax and hydrates is a major concern for hydrocarbon transport in pipelines, tiebacks, and other production tubing in cold environments. Traditionally, chemical, mechanical, and thermal methods are used to mitigate the deposition at the expense of production interruption, complex maintenance, costs, and environmental hazards.\n This paper studies the potential of nanopaint-aided electromagnetic pigging. This process has potentially low production impact, simple maintenance, low energy cost, and no chemical expense or hazards. The electromagnetic pig contains an induction coil that emits an alternating magnetic field. The alternating magnetic field induces heat in the nanopaint coating (i.e. coating with embedded paramagnetic nanoparticles) on the pipeline's inner wall and in the pipeline wall itself. The heat then melts and peels off the wax and hydrates adhering to the pipeline, allowing the hydrocarbon to carry them away.\n We analyze the heating effectiveness and efficiency of electromagnetic pigging. The heating effectiveness is measured by the maximum pigging speed that allows deposit removal. The heating efficiency is measured by the ratio of the heat received by the wax over the total emitted electromagnetic energy, which we define as the pig induction factor.\n Based on our numerical model, we compare the pig induction factor for different coil designs, different hydrocarbon flow rates, and different pig traveling speeds. We find that slower pig speed generally improves the pigging performance, that shorter solenoids with larger radius have higher efficiency, and that the oil flow does not considerably affect the process. We re-evaluate the maximum pig speed defined by the static pig model and confirm that a solenoid with larger radius allows higher pig speed.\n We investigate the potential of a novel, low-maintenance electromagnetic pigging method that poses minimal interruption to production. This investigation is a basis for a new technology that stems from initial experimental investigation done by our collaborators. We here provide parameters for pig design and pigging protocol optimization, and will put them in practice in our future lab experiments.","PeriodicalId":10909,"journal":{"name":"Day 2 Tue, October 01, 2019","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanopaint-Aided Electromagnetic Pigging in Pipelines and Production Tubing\",\"authors\":\"Ningyu Wang, M. Prodanović, H. Daigle\",\"doi\":\"10.2118/196112-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Precipitation and deposition of paraffin wax and hydrates is a major concern for hydrocarbon transport in pipelines, tiebacks, and other production tubing in cold environments. Traditionally, chemical, mechanical, and thermal methods are used to mitigate the deposition at the expense of production interruption, complex maintenance, costs, and environmental hazards.\\n This paper studies the potential of nanopaint-aided electromagnetic pigging. This process has potentially low production impact, simple maintenance, low energy cost, and no chemical expense or hazards. The electromagnetic pig contains an induction coil that emits an alternating magnetic field. The alternating magnetic field induces heat in the nanopaint coating (i.e. coating with embedded paramagnetic nanoparticles) on the pipeline's inner wall and in the pipeline wall itself. The heat then melts and peels off the wax and hydrates adhering to the pipeline, allowing the hydrocarbon to carry them away.\\n We analyze the heating effectiveness and efficiency of electromagnetic pigging. The heating effectiveness is measured by the maximum pigging speed that allows deposit removal. The heating efficiency is measured by the ratio of the heat received by the wax over the total emitted electromagnetic energy, which we define as the pig induction factor.\\n Based on our numerical model, we compare the pig induction factor for different coil designs, different hydrocarbon flow rates, and different pig traveling speeds. We find that slower pig speed generally improves the pigging performance, that shorter solenoids with larger radius have higher efficiency, and that the oil flow does not considerably affect the process. We re-evaluate the maximum pig speed defined by the static pig model and confirm that a solenoid with larger radius allows higher pig speed.\\n We investigate the potential of a novel, low-maintenance electromagnetic pigging method that poses minimal interruption to production. This investigation is a basis for a new technology that stems from initial experimental investigation done by our collaborators. We here provide parameters for pig design and pigging protocol optimization, and will put them in practice in our future lab experiments.\",\"PeriodicalId\":10909,\"journal\":{\"name\":\"Day 2 Tue, October 01, 2019\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, October 01, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196112-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 01, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196112-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanopaint-Aided Electromagnetic Pigging in Pipelines and Production Tubing
Precipitation and deposition of paraffin wax and hydrates is a major concern for hydrocarbon transport in pipelines, tiebacks, and other production tubing in cold environments. Traditionally, chemical, mechanical, and thermal methods are used to mitigate the deposition at the expense of production interruption, complex maintenance, costs, and environmental hazards.
This paper studies the potential of nanopaint-aided electromagnetic pigging. This process has potentially low production impact, simple maintenance, low energy cost, and no chemical expense or hazards. The electromagnetic pig contains an induction coil that emits an alternating magnetic field. The alternating magnetic field induces heat in the nanopaint coating (i.e. coating with embedded paramagnetic nanoparticles) on the pipeline's inner wall and in the pipeline wall itself. The heat then melts and peels off the wax and hydrates adhering to the pipeline, allowing the hydrocarbon to carry them away.
We analyze the heating effectiveness and efficiency of electromagnetic pigging. The heating effectiveness is measured by the maximum pigging speed that allows deposit removal. The heating efficiency is measured by the ratio of the heat received by the wax over the total emitted electromagnetic energy, which we define as the pig induction factor.
Based on our numerical model, we compare the pig induction factor for different coil designs, different hydrocarbon flow rates, and different pig traveling speeds. We find that slower pig speed generally improves the pigging performance, that shorter solenoids with larger radius have higher efficiency, and that the oil flow does not considerably affect the process. We re-evaluate the maximum pig speed defined by the static pig model and confirm that a solenoid with larger radius allows higher pig speed.
We investigate the potential of a novel, low-maintenance electromagnetic pigging method that poses minimal interruption to production. This investigation is a basis for a new technology that stems from initial experimental investigation done by our collaborators. We here provide parameters for pig design and pigging protocol optimization, and will put them in practice in our future lab experiments.