p - simmrank:将simmrank扩展到无标度二部网络

Prasenjit Dey, Kunal Goel, Rahul Agrawal
{"title":"p - simmrank:将simmrank扩展到无标度二部网络","authors":"Prasenjit Dey, Kunal Goel, Rahul Agrawal","doi":"10.1145/3366423.3380081","DOIUrl":null,"url":null,"abstract":"The measure of similarity between nodes in a graph is a useful tool in many areas of computer science. SimRank, proposed by Jeh and Widom [7], is a classic measure of similarities of nodes in graph that has both theoretical and intuitive properties and has been extensively studied and used in many applications such as Query-Rewriting, link prediction, collaborative filtering and so on. Existing works based on Simrank primarily focus on preserving the microscopic structure, such as the second and third order proximity of the vertices, while the macroscopic scale-free property is largely ignored. Scale-free property is a critical property of any real-world web graphs where the vertex degrees follow a heavy-tailed distribution. In this paper, we introduce P-Simrank which extends the idea of Simrank to Scale-free bipartite networks. To study the efficacy of the proposed solution on a real world problem, we tested the same on the well known query-rewriting problem in sponsored search domain using bipartite click graph, similar to Simrank++ [1], which acts as our baseline. We show that Simrank++ produces sub-optimal similarity scores in case of bipartite graphs where degree distribution of vertices follow power-law. We also show how P-Simrank can be optimized for real-world large graphs. Finally, we experimentally evaluate P-Simrank algorithm against Simrank++, using actual click graphs obtained from Bing, and show that P-Simrank outperforms Simrank++ in variety of metrics.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"P-Simrank: Extending Simrank to Scale-Free Bipartite Networks\",\"authors\":\"Prasenjit Dey, Kunal Goel, Rahul Agrawal\",\"doi\":\"10.1145/3366423.3380081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measure of similarity between nodes in a graph is a useful tool in many areas of computer science. SimRank, proposed by Jeh and Widom [7], is a classic measure of similarities of nodes in graph that has both theoretical and intuitive properties and has been extensively studied and used in many applications such as Query-Rewriting, link prediction, collaborative filtering and so on. Existing works based on Simrank primarily focus on preserving the microscopic structure, such as the second and third order proximity of the vertices, while the macroscopic scale-free property is largely ignored. Scale-free property is a critical property of any real-world web graphs where the vertex degrees follow a heavy-tailed distribution. In this paper, we introduce P-Simrank which extends the idea of Simrank to Scale-free bipartite networks. To study the efficacy of the proposed solution on a real world problem, we tested the same on the well known query-rewriting problem in sponsored search domain using bipartite click graph, similar to Simrank++ [1], which acts as our baseline. We show that Simrank++ produces sub-optimal similarity scores in case of bipartite graphs where degree distribution of vertices follow power-law. We also show how P-Simrank can be optimized for real-world large graphs. Finally, we experimentally evaluate P-Simrank algorithm against Simrank++, using actual click graphs obtained from Bing, and show that P-Simrank outperforms Simrank++ in variety of metrics.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图中节点之间的相似性度量在计算机科学的许多领域是一个有用的工具。由Jeh和Widom[7]提出的simmrank是一种经典的图中节点相似度度量,具有理论性和直观性,在查询重写、链接预测、协同过滤等许多应用中得到了广泛的研究和应用。现有的基于Simrank的工作主要集中在保留微观结构,如顶点的二阶和三阶接近性,而忽略了宏观的无标度性。无标度特性是任何现实世界中顶点度遵循重尾分布的网络图的一个关键特性。本文引入了p - simmrank,将simmrank的思想推广到无标度二部网络中。为了研究提出的解决方案在现实世界问题上的有效性,我们使用类似于simrank++[1]的二部点击图(bipartite click graph)对赞助搜索领域中众所周知的查询重写问题进行了相同的测试,该图作为我们的基线。我们证明simrank++在顶点的度分布遵循幂律的二部图的情况下产生次优的相似性分数。我们还展示了如何针对现实世界中的大型图形优化p - simmrank。最后,我们通过实验评估了p - simmrank算法与simmrank ++的对比,使用从必应获得的实际点击图,并表明p - simmrank在各种指标上优于simmrank ++。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P-Simrank: Extending Simrank to Scale-Free Bipartite Networks
The measure of similarity between nodes in a graph is a useful tool in many areas of computer science. SimRank, proposed by Jeh and Widom [7], is a classic measure of similarities of nodes in graph that has both theoretical and intuitive properties and has been extensively studied and used in many applications such as Query-Rewriting, link prediction, collaborative filtering and so on. Existing works based on Simrank primarily focus on preserving the microscopic structure, such as the second and third order proximity of the vertices, while the macroscopic scale-free property is largely ignored. Scale-free property is a critical property of any real-world web graphs where the vertex degrees follow a heavy-tailed distribution. In this paper, we introduce P-Simrank which extends the idea of Simrank to Scale-free bipartite networks. To study the efficacy of the proposed solution on a real world problem, we tested the same on the well known query-rewriting problem in sponsored search domain using bipartite click graph, similar to Simrank++ [1], which acts as our baseline. We show that Simrank++ produces sub-optimal similarity scores in case of bipartite graphs where degree distribution of vertices follow power-law. We also show how P-Simrank can be optimized for real-world large graphs. Finally, we experimentally evaluate P-Simrank algorithm against Simrank++, using actual click graphs obtained from Bing, and show that P-Simrank outperforms Simrank++ in variety of metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信