基于电机特性和车辆动力学的无人驾驶电动汽车制动新策略

Q3 Engineering
Wenfei Li, H. Du, Weihua Li
{"title":"基于电机特性和车辆动力学的无人驾驶电动汽车制动新策略","authors":"Wenfei Li, H. Du, Weihua Li","doi":"10.1504/IJPT.2019.10022573","DOIUrl":null,"url":null,"abstract":"Traditionally, vehicle braking generally follows the driver's braking intention. It is impossible for the driver to work out the optimal braking trajectory. However, unmanned vehicle can decide when to brake and how to brake. In this paper, we propose a braking scheme for unmanned electric vehicles. It adopts different braking control strategy according to different braking conditions. When the situation is urgent, the vehicle adopts emergency braking. Otherwise, the vehicle adopts normal braking. In the case of normal braking, the vehicle can automatically set the optimal braking trajectory. The setting of the braking trajectory is based on the characteristics of the motor and vehicle states. When the vehicle follows the set braking trajectory, the electric vehicles can obtain the maximum braking energy recovery. The simulation results show that the proposed braking method is able to achieve the maximum braking energy recovery in the case of normal braking.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new braking strategy based on motor characteristics and vehicle dynamics for unmanned electric vehicles\",\"authors\":\"Wenfei Li, H. Du, Weihua Li\",\"doi\":\"10.1504/IJPT.2019.10022573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, vehicle braking generally follows the driver's braking intention. It is impossible for the driver to work out the optimal braking trajectory. However, unmanned vehicle can decide when to brake and how to brake. In this paper, we propose a braking scheme for unmanned electric vehicles. It adopts different braking control strategy according to different braking conditions. When the situation is urgent, the vehicle adopts emergency braking. Otherwise, the vehicle adopts normal braking. In the case of normal braking, the vehicle can automatically set the optimal braking trajectory. The setting of the braking trajectory is based on the characteristics of the motor and vehicle states. When the vehicle follows the set braking trajectory, the electric vehicles can obtain the maximum braking energy recovery. The simulation results show that the proposed braking method is able to achieve the maximum braking energy recovery in the case of normal braking.\",\"PeriodicalId\":37550,\"journal\":{\"name\":\"International Journal of Powertrains\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Powertrains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJPT.2019.10022573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPT.2019.10022573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

传统上,车辆制动一般遵循驾驶员的制动意图。驾驶员不可能计算出最佳制动轨迹。然而,无人驾驶车辆可以决定何时刹车以及如何刹车。本文提出了一种无人驾驶电动汽车的制动方案。针对不同的制动工况,采用不同的制动控制策略。当情况紧急时,车辆采用紧急制动。否则,车辆采用正常制动。在正常制动情况下,车辆可自动设定最佳制动轨迹。制动轨迹的设置是基于电机和车辆状态的特性。当车辆按照设定的制动轨迹行驶时,电动汽车可以获得最大的制动能量回收。仿真结果表明,在正常制动情况下,所提出的制动方法能够实现最大的制动能量回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new braking strategy based on motor characteristics and vehicle dynamics for unmanned electric vehicles
Traditionally, vehicle braking generally follows the driver's braking intention. It is impossible for the driver to work out the optimal braking trajectory. However, unmanned vehicle can decide when to brake and how to brake. In this paper, we propose a braking scheme for unmanned electric vehicles. It adopts different braking control strategy according to different braking conditions. When the situation is urgent, the vehicle adopts emergency braking. Otherwise, the vehicle adopts normal braking. In the case of normal braking, the vehicle can automatically set the optimal braking trajectory. The setting of the braking trajectory is based on the characteristics of the motor and vehicle states. When the vehicle follows the set braking trajectory, the electric vehicles can obtain the maximum braking energy recovery. The simulation results show that the proposed braking method is able to achieve the maximum braking energy recovery in the case of normal braking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Powertrains
International Journal of Powertrains Engineering-Automotive Engineering
CiteScore
1.20
自引率
0.00%
发文量
25
期刊介绍: IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信