基于粒子群优化的GPC权值自整定在机械臂末端执行器轨迹跟踪中的应用

Felipe J. S. Vasconcelos, Iury de Amorim Gaspar Filgueiras, W. Correia
{"title":"基于粒子群优化的GPC权值自整定在机械臂末端执行器轨迹跟踪中的应用","authors":"Felipe J. S. Vasconcelos, Iury de Amorim Gaspar Filgueiras, W. Correia","doi":"10.1109/ICAR46387.2019.8981607","DOIUrl":null,"url":null,"abstract":"Manipulators are becoming more and more common to perform many tasks, whose accomplishment is often related to the applied control law. Regarding to this issue, control theory is helpful as the proper controller choice may turn the manipulator into a handy tool. Within this context this work presents an automatic tuning method for the Generalized Predictive Controller (GPC) in order to tracking the trajectory of a manipulator end-effector. The strategy employs Particle Swarm Optimization (PSO) to properly determine GPC cost function weights at each iteration that lead to zero error tracking. The proposed controller is compared to classical approaches for three different trajectories with results showing a better performance and tracking accuracy for the proposed approach.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"16 1","pages":"702-707"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Auto-Tuning of GPC weights based on Particle Swarm Optimization applied to a Manipulator End-Effector Trajectory Tracking\",\"authors\":\"Felipe J. S. Vasconcelos, Iury de Amorim Gaspar Filgueiras, W. Correia\",\"doi\":\"10.1109/ICAR46387.2019.8981607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manipulators are becoming more and more common to perform many tasks, whose accomplishment is often related to the applied control law. Regarding to this issue, control theory is helpful as the proper controller choice may turn the manipulator into a handy tool. Within this context this work presents an automatic tuning method for the Generalized Predictive Controller (GPC) in order to tracking the trajectory of a manipulator end-effector. The strategy employs Particle Swarm Optimization (PSO) to properly determine GPC cost function weights at each iteration that lead to zero error tracking. The proposed controller is compared to classical approaches for three different trajectories with results showing a better performance and tracking accuracy for the proposed approach.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"16 1\",\"pages\":\"702-707\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机械手越来越普遍地执行许多任务,其完成往往与所应用的控制律有关。对于这个问题,控制理论是有帮助的,因为适当的控制器选择可以使机械手成为一个方便的工具。在此背景下,本文提出了一种广义预测控制器(GPC)的自动整定方法,以跟踪机械臂末端执行器的轨迹。该策略采用粒子群算法(PSO)在每次迭代中正确确定GPC代价函数的权重,从而实现零误差跟踪。将所提出的控制器与经典方法进行了三种不同轨迹的比较,结果表明所提出的方法具有更好的性能和跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-Tuning of GPC weights based on Particle Swarm Optimization applied to a Manipulator End-Effector Trajectory Tracking
Manipulators are becoming more and more common to perform many tasks, whose accomplishment is often related to the applied control law. Regarding to this issue, control theory is helpful as the proper controller choice may turn the manipulator into a handy tool. Within this context this work presents an automatic tuning method for the Generalized Predictive Controller (GPC) in order to tracking the trajectory of a manipulator end-effector. The strategy employs Particle Swarm Optimization (PSO) to properly determine GPC cost function weights at each iteration that lead to zero error tracking. The proposed controller is compared to classical approaches for three different trajectories with results showing a better performance and tracking accuracy for the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信