{"title":"极小减法中的Dyson-Schwinger方程","authors":"Paul-Hermann Balduf","doi":"10.4171/aihpd/169","DOIUrl":null,"url":null,"abstract":"We compare the solutions of one-scale Dyson-Schwinger equations in the Minimal subtraction (MS) scheme to the solutions in kinematic (MOM) renormalization schemes. We establish that the MS-solution can be interpreted as a MOM-solution, but with a shifted renormalization point, where the shift itself is a function of the coupling. We derive relations between this shift and various renormalization group functions and counter terms in perturbation theory. As concrete examples, we examine three different one-scale Dyson-Schwinger equations, one based on the D=4 multiedge graph, one for the D=6 multiedge graph and one mathematical toy model. For each of the integral kernels, we examine both the linear and nine different non-linear Dyson-Schwinger equations. For the linear cases, we empirically find exact functional forms of the shift between MOM and MS renormalization points. For the non-linear DSEs, the results for the shift suggest a factorially divergent power series. We determine the leading asymptotic growth parameters and find them in agreement with the ones of the anomalous dimension. Finally, we present a tentative exact non-perturbative solution to one of the non-linear DSEs of the toy model.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"273 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dyson–Schwinger equations in minimal subtraction\",\"authors\":\"Paul-Hermann Balduf\",\"doi\":\"10.4171/aihpd/169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare the solutions of one-scale Dyson-Schwinger equations in the Minimal subtraction (MS) scheme to the solutions in kinematic (MOM) renormalization schemes. We establish that the MS-solution can be interpreted as a MOM-solution, but with a shifted renormalization point, where the shift itself is a function of the coupling. We derive relations between this shift and various renormalization group functions and counter terms in perturbation theory. As concrete examples, we examine three different one-scale Dyson-Schwinger equations, one based on the D=4 multiedge graph, one for the D=6 multiedge graph and one mathematical toy model. For each of the integral kernels, we examine both the linear and nine different non-linear Dyson-Schwinger equations. For the linear cases, we empirically find exact functional forms of the shift between MOM and MS renormalization points. For the non-linear DSEs, the results for the shift suggest a factorially divergent power series. We determine the leading asymptotic growth parameters and find them in agreement with the ones of the anomalous dimension. Finally, we present a tentative exact non-perturbative solution to one of the non-linear DSEs of the toy model.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":\"273 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpd/169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We compare the solutions of one-scale Dyson-Schwinger equations in the Minimal subtraction (MS) scheme to the solutions in kinematic (MOM) renormalization schemes. We establish that the MS-solution can be interpreted as a MOM-solution, but with a shifted renormalization point, where the shift itself is a function of the coupling. We derive relations between this shift and various renormalization group functions and counter terms in perturbation theory. As concrete examples, we examine three different one-scale Dyson-Schwinger equations, one based on the D=4 multiedge graph, one for the D=6 multiedge graph and one mathematical toy model. For each of the integral kernels, we examine both the linear and nine different non-linear Dyson-Schwinger equations. For the linear cases, we empirically find exact functional forms of the shift between MOM and MS renormalization points. For the non-linear DSEs, the results for the shift suggest a factorially divergent power series. We determine the leading asymptotic growth parameters and find them in agreement with the ones of the anomalous dimension. Finally, we present a tentative exact non-perturbative solution to one of the non-linear DSEs of the toy model.