实际上无限的数类和可计算的实数族

IF 0.3 Q4 MATHEMATICS, APPLIED
M. Faizrahmanov, Zlata Shchedrikova
{"title":"实际上无限的数类和可计算的实数族","authors":"M. Faizrahmanov, Zlata Shchedrikova","doi":"10.3233/com-230461","DOIUrl":null,"url":null,"abstract":"We prove various sufficient conditions for the effective infinity of classes of computable numberings. Then we apply them to show that for every computable family of left-c.e. reals without the greatest element the class of its Friedberg computable numberings is effectively infinite. In particular, this result covers the families of all left-c.e. and all Martin-Löf random left-c.e. reals whose Friedberg computable numberings have been constructed by Broadhead and Kjos-Hanssen in their paper (In Mathematical Theory and Computational Practice, CiE 2009 (2009) 49–58 Springer). In addition, for every infinite computable family of left-c.e. reals we prove that the classes of all its computable, positive and minimal numberings are effectively infinite.","PeriodicalId":42452,"journal":{"name":"Computability-The Journal of the Association CiE","volume":"526 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectively infinite classes of numberings and computable families of reals\",\"authors\":\"M. Faizrahmanov, Zlata Shchedrikova\",\"doi\":\"10.3233/com-230461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove various sufficient conditions for the effective infinity of classes of computable numberings. Then we apply them to show that for every computable family of left-c.e. reals without the greatest element the class of its Friedberg computable numberings is effectively infinite. In particular, this result covers the families of all left-c.e. and all Martin-Löf random left-c.e. reals whose Friedberg computable numberings have been constructed by Broadhead and Kjos-Hanssen in their paper (In Mathematical Theory and Computational Practice, CiE 2009 (2009) 49–58 Springer). In addition, for every infinite computable family of left-c.e. reals we prove that the classes of all its computable, positive and minimal numberings are effectively infinite.\",\"PeriodicalId\":42452,\"journal\":{\"name\":\"Computability-The Journal of the Association CiE\",\"volume\":\"526 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computability-The Journal of the Association CiE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/com-230461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computability-The Journal of the Association CiE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/com-230461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

证明了一类可计算数的有效无穷的各种充分条件。然后应用它们证明了对于每一个可计算的左-c - e族。没有最大元的实数,它的弗里德伯格可计算数的类实际上是无限的。特别地,这个结果涵盖了所有左-c - e的科。和所有Martin-Löf随机左-c。在Broadhead和Kjos-Hanssen的论文(in Mathematical Theory and Computational Practice, CiE 2009 (2009) 49-58 Springer)中,他们构建了弗里德伯格可计算数。此外,对于每一个无限可计算的左-c族。实数证明了其所有可计算数、正数和极小数的类是有效无穷的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effectively infinite classes of numberings and computable families of reals
We prove various sufficient conditions for the effective infinity of classes of computable numberings. Then we apply them to show that for every computable family of left-c.e. reals without the greatest element the class of its Friedberg computable numberings is effectively infinite. In particular, this result covers the families of all left-c.e. and all Martin-Löf random left-c.e. reals whose Friedberg computable numberings have been constructed by Broadhead and Kjos-Hanssen in their paper (In Mathematical Theory and Computational Practice, CiE 2009 (2009) 49–58 Springer). In addition, for every infinite computable family of left-c.e. reals we prove that the classes of all its computable, positive and minimal numberings are effectively infinite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信