Christopher M. Reardon, J. Gregory, Kerstin S Haring, Benjamin Dossett, Ori Miller, A. Inyang
{"title":"无仪器环境下自主移动机器人变化检测的增强现实可视化","authors":"Christopher M. Reardon, J. Gregory, Kerstin S Haring, Benjamin Dossett, Ori Miller, A. Inyang","doi":"10.1145/3611654","DOIUrl":null,"url":null,"abstract":"The creation of information transparency solutions to enable humans to understand robot perception is a challenging requirement for autonomous and artificially intelligent robots to impact a multitude of domains. By taking advantage of comprehensive and high-volume data from robot teammates’ advanced perception and reasoning capabilities, humans will be able to make better decisions, with significant impacts from safety to functionality. We present a solution to this challenge by coupling augmented reality (AR) with an intelligent mobile robot that is autonomously detecting novel changes in an environment. We show that the human teammate can understand and make decisions based on information shared via AR by the robot. Sharing of robot-perceived information is enabled by the robot’s online calculation of the human’s relative position, making the system robust to environments without external instrumentation such as GPS. Our robotic system performs change detection by comparing current metric sensor readings against a previous reading to identify differences. We experimentally explore the design of change detection visualizations and the aggregation of information, the impact of instruction on communication understanding, the effects of visualization and alignment error, and the relationship between situated 3D visualization in AR and human movement in the operational environment on shared situational awareness in human-robot teams. We demonstrate this novel capability and assess the effectiveness of human-robot teaming in crowdsourced data-driven studies, as well as an in-person study where participants are equipped with a commercial off-the-shelf AR headset and teamed with a small ground robot which maneuvers through the environment. The mobile robot scans for changes, which are visualized via AR to the participant. The effectiveness of this communication is evaluated through accuracy and subjective assessment metrics to provide insight into interpretation and experience.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Reality Visualization of Autonomous Mobile Robot Change Detection in Uninstrumented Environments\",\"authors\":\"Christopher M. Reardon, J. Gregory, Kerstin S Haring, Benjamin Dossett, Ori Miller, A. Inyang\",\"doi\":\"10.1145/3611654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The creation of information transparency solutions to enable humans to understand robot perception is a challenging requirement for autonomous and artificially intelligent robots to impact a multitude of domains. By taking advantage of comprehensive and high-volume data from robot teammates’ advanced perception and reasoning capabilities, humans will be able to make better decisions, with significant impacts from safety to functionality. We present a solution to this challenge by coupling augmented reality (AR) with an intelligent mobile robot that is autonomously detecting novel changes in an environment. We show that the human teammate can understand and make decisions based on information shared via AR by the robot. Sharing of robot-perceived information is enabled by the robot’s online calculation of the human’s relative position, making the system robust to environments without external instrumentation such as GPS. Our robotic system performs change detection by comparing current metric sensor readings against a previous reading to identify differences. We experimentally explore the design of change detection visualizations and the aggregation of information, the impact of instruction on communication understanding, the effects of visualization and alignment error, and the relationship between situated 3D visualization in AR and human movement in the operational environment on shared situational awareness in human-robot teams. We demonstrate this novel capability and assess the effectiveness of human-robot teaming in crowdsourced data-driven studies, as well as an in-person study where participants are equipped with a commercial off-the-shelf AR headset and teamed with a small ground robot which maneuvers through the environment. The mobile robot scans for changes, which are visualized via AR to the participant. The effectiveness of this communication is evaluated through accuracy and subjective assessment metrics to provide insight into interpretation and experience.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3611654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Augmented Reality Visualization of Autonomous Mobile Robot Change Detection in Uninstrumented Environments
The creation of information transparency solutions to enable humans to understand robot perception is a challenging requirement for autonomous and artificially intelligent robots to impact a multitude of domains. By taking advantage of comprehensive and high-volume data from robot teammates’ advanced perception and reasoning capabilities, humans will be able to make better decisions, with significant impacts from safety to functionality. We present a solution to this challenge by coupling augmented reality (AR) with an intelligent mobile robot that is autonomously detecting novel changes in an environment. We show that the human teammate can understand and make decisions based on information shared via AR by the robot. Sharing of robot-perceived information is enabled by the robot’s online calculation of the human’s relative position, making the system robust to environments without external instrumentation such as GPS. Our robotic system performs change detection by comparing current metric sensor readings against a previous reading to identify differences. We experimentally explore the design of change detection visualizations and the aggregation of information, the impact of instruction on communication understanding, the effects of visualization and alignment error, and the relationship between situated 3D visualization in AR and human movement in the operational environment on shared situational awareness in human-robot teams. We demonstrate this novel capability and assess the effectiveness of human-robot teaming in crowdsourced data-driven studies, as well as an in-person study where participants are equipped with a commercial off-the-shelf AR headset and teamed with a small ground robot which maneuvers through the environment. The mobile robot scans for changes, which are visualized via AR to the participant. The effectiveness of this communication is evaluated through accuracy and subjective assessment metrics to provide insight into interpretation and experience.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.