抑制超声图像中乘性噪声的混合扩散控制模型

S. Kessy, B. Maiseli, Michael Kisangiri
{"title":"抑制超声图像中乘性噪声的混合扩散控制模型","authors":"S. Kessy, B. Maiseli, Michael Kisangiri","doi":"10.5121/SIPIJ.2017.8401","DOIUrl":null,"url":null,"abstract":"Ultrasonograms refer to images generated through ultrasonography, a technique that applies ultrasound pulses to delineate internal structures of the body. Despite being useful in medicine, ultrasonograms usually suffer from multiplicative noises that may limit doctors to analyse and interpret them. Attempts to address the challenge have been made from previous works, but denoising ultrasonograms while preserving semantic features remains an open-ended problem. In this work, we have proposed a diffusion-steered model that gives an effective interplay between total variation and Perona-Malik models. Two parameters have been introduced into the framework to convexify our energy functional. Also, to deal with multiplicative noise, we have incorporated a log-based prior into the framework. Empirical results show that the proposed method generates sharper and detailed images. Even more importantly, our framework can be evolved over a longer time without smudging critical image features.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"130 1","pages":"01-13"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Diffusion Steered Model for Suppressing Multiplicative Noise in Ultrasonograms\",\"authors\":\"S. Kessy, B. Maiseli, Michael Kisangiri\",\"doi\":\"10.5121/SIPIJ.2017.8401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonograms refer to images generated through ultrasonography, a technique that applies ultrasound pulses to delineate internal structures of the body. Despite being useful in medicine, ultrasonograms usually suffer from multiplicative noises that may limit doctors to analyse and interpret them. Attempts to address the challenge have been made from previous works, but denoising ultrasonograms while preserving semantic features remains an open-ended problem. In this work, we have proposed a diffusion-steered model that gives an effective interplay between total variation and Perona-Malik models. Two parameters have been introduced into the framework to convexify our energy functional. Also, to deal with multiplicative noise, we have incorporated a log-based prior into the framework. Empirical results show that the proposed method generates sharper and detailed images. Even more importantly, our framework can be evolved over a longer time without smudging critical image features.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"130 1\",\"pages\":\"01-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/SIPIJ.2017.8401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2017.8401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超声图是指通过超声成像产生的图像,这是一种应用超声脉冲来描绘身体内部结构的技术。尽管在医学上很有用,但超声检查通常会受到乘法噪声的影响,这可能会限制医生对其进行分析和解释。以前的工作已经尝试解决这一挑战,但是在保留语义特征的同时去噪超声图仍然是一个开放式的问题。在这项工作中,我们提出了一个扩散导向模型,该模型给出了总变分和Perona-Malik模型之间的有效相互作用。在框架中引入了两个参数来使能量泛函凸出。此外,为了处理乘法噪声,我们在框架中加入了基于对数的先验。实验结果表明,该方法能生成更清晰、更精细的图像。更重要的是,我们的框架可以在不模糊关键图像特征的情况下经过较长时间的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Diffusion Steered Model for Suppressing Multiplicative Noise in Ultrasonograms
Ultrasonograms refer to images generated through ultrasonography, a technique that applies ultrasound pulses to delineate internal structures of the body. Despite being useful in medicine, ultrasonograms usually suffer from multiplicative noises that may limit doctors to analyse and interpret them. Attempts to address the challenge have been made from previous works, but denoising ultrasonograms while preserving semantic features remains an open-ended problem. In this work, we have proposed a diffusion-steered model that gives an effective interplay between total variation and Perona-Malik models. Two parameters have been introduced into the framework to convexify our energy functional. Also, to deal with multiplicative noise, we have incorporated a log-based prior into the framework. Empirical results show that the proposed method generates sharper and detailed images. Even more importantly, our framework can be evolved over a longer time without smudging critical image features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信