超临界水萃取生物质制氢

A. Demirbaş
{"title":"超临界水萃取生物质制氢","authors":"A. Demirbaş","doi":"10.1080/00908310490449379","DOIUrl":null,"url":null,"abstract":"Supercritical fluid extraction (SFE) is a separation technology that uses supercritical fluid solvent. Hydrogen can be produced from biomass via two thermochemical processes: (1) gasification followed by reforming of the syngas, and (2) fast pyrolysis followed by reforming of the carbohydrate fraction of the bio-oil. In each process, the water–gas shift is used to convert the reformed gas into hydrogen, and pressure swing adsorption is used to purify the product. In comparison with other biomass thermochemical gasification such as air gasification or steam gasification, the supercritical water gasification can deal directly with the wet biomass without drying and have high gasification efficiency in lower temperatures. The cost of hydrogen production from supercritical water gasification of wet biomass was several times higher than the current price of hydrogen from steam methane reforming. Biomass was gasified in supercritical water at a series of temperatures and pressures during different resident times to form a product gas composed of H 2 , CO 2 , CO, CH 4 , and a small amount of C 2 H 4 and C 2 H 6 .","PeriodicalId":11841,"journal":{"name":"Energy Sources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Hydrogen Production from Biomass via Supercritical Water Extraction\",\"authors\":\"A. Demirbaş\",\"doi\":\"10.1080/00908310490449379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supercritical fluid extraction (SFE) is a separation technology that uses supercritical fluid solvent. Hydrogen can be produced from biomass via two thermochemical processes: (1) gasification followed by reforming of the syngas, and (2) fast pyrolysis followed by reforming of the carbohydrate fraction of the bio-oil. In each process, the water–gas shift is used to convert the reformed gas into hydrogen, and pressure swing adsorption is used to purify the product. In comparison with other biomass thermochemical gasification such as air gasification or steam gasification, the supercritical water gasification can deal directly with the wet biomass without drying and have high gasification efficiency in lower temperatures. The cost of hydrogen production from supercritical water gasification of wet biomass was several times higher than the current price of hydrogen from steam methane reforming. Biomass was gasified in supercritical water at a series of temperatures and pressures during different resident times to form a product gas composed of H 2 , CO 2 , CO, CH 4 , and a small amount of C 2 H 4 and C 2 H 6 .\",\"PeriodicalId\":11841,\"journal\":{\"name\":\"Energy Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Sources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00908310490449379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Sources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00908310490449379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

超临界流体萃取(SFE)是一种利用超临界流体溶剂的分离技术。生物质制氢可以通过两个热化学过程:(1)气化,然后对合成气进行重整;(2)快速热解,然后对生物油的碳水化合物部分进行重整。各工艺均采用水气变换将转化后的气体转化为氢气,并采用变压吸附对产物进行净化。与空气气化或蒸汽气化等其他生物质热化学气化相比,超临界水气化可直接处理湿生物质,无需干燥,在较低温度下气化效率高。湿生物质超临界水气化制氢的成本比目前蒸汽甲烷重整制氢的价格高出数倍。生物质在超临界水中,在不同停留时间的温度和压力下气化,形成由h2、co2、CO、ch4以及少量的c2h4和c2h6组成的产物气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen Production from Biomass via Supercritical Water Extraction
Supercritical fluid extraction (SFE) is a separation technology that uses supercritical fluid solvent. Hydrogen can be produced from biomass via two thermochemical processes: (1) gasification followed by reforming of the syngas, and (2) fast pyrolysis followed by reforming of the carbohydrate fraction of the bio-oil. In each process, the water–gas shift is used to convert the reformed gas into hydrogen, and pressure swing adsorption is used to purify the product. In comparison with other biomass thermochemical gasification such as air gasification or steam gasification, the supercritical water gasification can deal directly with the wet biomass without drying and have high gasification efficiency in lower temperatures. The cost of hydrogen production from supercritical water gasification of wet biomass was several times higher than the current price of hydrogen from steam methane reforming. Biomass was gasified in supercritical water at a series of temperatures and pressures during different resident times to form a product gas composed of H 2 , CO 2 , CO, CH 4 , and a small amount of C 2 H 4 and C 2 H 6 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信