关于电荷的Landau-Kolmogorov型不等式及其应用

Q4 Mathematics
V. Babenko, V. Babenko, O. Kovalenko, N. Parfinovych
{"title":"关于电荷的Landau-Kolmogorov型不等式及其应用","authors":"V. Babenko, V. Babenko, O. Kovalenko, N. Parfinovych","doi":"10.15421/242301","DOIUrl":null,"url":null,"abstract":"In this article we prove sharp Landau-Kolmogorov type inequalities on a class of charges defined on Lebesgue measurable subsets of a cone in $\\mathbb{R}^d$, $d\\geqslant 1$, that are absolutely continuous with respect to the Lebesgue measure. In addition we solve the Stechkin problem of approximation of the Radon-Nikodym derivative of such charges by bounded operators and two related problems. As an application, we also solve these extremal problems on classes of essentially bounded functions $f$ such that their distributional partial derivative $\\frac{\\partial ^d f}{\\partial x_1\\ldots\\partial x_d}$ belongs to the Sobolev space $W^{1,\\infty}$.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Landau-Kolmogorov type inequalities for charges and their applications\",\"authors\":\"V. Babenko, V. Babenko, O. Kovalenko, N. Parfinovych\",\"doi\":\"10.15421/242301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we prove sharp Landau-Kolmogorov type inequalities on a class of charges defined on Lebesgue measurable subsets of a cone in $\\\\mathbb{R}^d$, $d\\\\geqslant 1$, that are absolutely continuous with respect to the Lebesgue measure. In addition we solve the Stechkin problem of approximation of the Radon-Nikodym derivative of such charges by bounded operators and two related problems. As an application, we also solve these extremal problems on classes of essentially bounded functions $f$ such that their distributional partial derivative $\\\\frac{\\\\partial ^d f}{\\\\partial x_1\\\\ldots\\\\partial x_d}$ belongs to the Sobolev space $W^{1,\\\\infty}$.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了在$\mathbb{R}^d$, $d\geqslant 1$中锥的Lebesgue可测子集上定义的一类电荷上的明显的Landau-Kolmogorov型不等式,它们相对于Lebesgue测度是绝对连续的。此外,我们还解决了用有界算子逼近这类电荷的Radon-Nikodym导数的Stechkin问题和两个相关问题。作为一个应用,我们也解决了本质上有界函数$f$类上的这些极值问题,使得它们的分布偏导数$\frac{\partial ^d f}{\partial x_1\ldots\partial x_d}$属于Sobolev空间$W^{1,\infty}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Landau-Kolmogorov type inequalities for charges and their applications
In this article we prove sharp Landau-Kolmogorov type inequalities on a class of charges defined on Lebesgue measurable subsets of a cone in $\mathbb{R}^d$, $d\geqslant 1$, that are absolutely continuous with respect to the Lebesgue measure. In addition we solve the Stechkin problem of approximation of the Radon-Nikodym derivative of such charges by bounded operators and two related problems. As an application, we also solve these extremal problems on classes of essentially bounded functions $f$ such that their distributional partial derivative $\frac{\partial ^d f}{\partial x_1\ldots\partial x_d}$ belongs to the Sobolev space $W^{1,\infty}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信