析取正确性的两个部分

IF 0.9 1区 数学 Q1 LOGIC
Cezary Cie'sli'nski, Mateusz Lelyk, Bartosz Wcislo
{"title":"析取正确性的两个部分","authors":"Cezary Cie'sli'nski, Mateusz Lelyk, Bartosz Wcislo","doi":"10.1142/s021906132250026x","DOIUrl":null,"url":null,"abstract":"Ali Enayat had asked whether two halves of Disjunctive Correctness (DC) for the compositional truth predicate are conservative over Peano Arithmetic. In this article, we show that the principle\"every true disjunction has a true disjunct\"is equivalent to bounded induction for the compositional truth predicate and thus it is not conservative. On the other hand, the converse implication\"any disjunction with a true disjunct is true\"can be conservatively added to PA. The methods introduced here allow us to give a direct nonconservativeness proof for DC.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The two halves of disjunctive correctness\",\"authors\":\"Cezary Cie'sli'nski, Mateusz Lelyk, Bartosz Wcislo\",\"doi\":\"10.1142/s021906132250026x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ali Enayat had asked whether two halves of Disjunctive Correctness (DC) for the compositional truth predicate are conservative over Peano Arithmetic. In this article, we show that the principle\\\"every true disjunction has a true disjunct\\\"is equivalent to bounded induction for the compositional truth predicate and thus it is not conservative. On the other hand, the converse implication\\\"any disjunction with a true disjunct is true\\\"can be conservatively added to PA. The methods introduced here allow us to give a direct nonconservativeness proof for DC.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021906132250026x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021906132250026x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

Ali Enayat问组合真谓词的两半析取正确性(DC)是否在Peano算术上是保守的。在本文中,我们证明了“每个真析取都有一个真析取”的原理等价于组合真谓词的有界归纳法,因此它不是保守的。另一方面,逆向蕴涵“任何有真析取的析取都为真”可以保守地添加到PA中。本文介绍的方法使我们能够给出直流的直接非保守性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The two halves of disjunctive correctness
Ali Enayat had asked whether two halves of Disjunctive Correctness (DC) for the compositional truth predicate are conservative over Peano Arithmetic. In this article, we show that the principle"every true disjunction has a true disjunct"is equivalent to bounded induction for the compositional truth predicate and thus it is not conservative. On the other hand, the converse implication"any disjunction with a true disjunct is true"can be conservatively added to PA. The methods introduced here allow us to give a direct nonconservativeness proof for DC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信