{"title":"量子图灵自动机","authors":"M. Bartha","doi":"10.4204/EPTCS.143.2","DOIUrl":null,"url":null,"abstract":"A denotational semantics of quantum Turing machines having a quantum control is defined in the dagger compact closed category of finite dimensional Hilbert spaces. Using the Moore-Penrose generalized inverse, a new additive trace is introduced on the restriction of this category to isometries, which trace is carried over to directed quantum Turing machines as monoidal automata. The Joyal-Street-Verity Int construction is then used to extend this structure to a reversible bidirectional one.","PeriodicalId":88470,"journal":{"name":"Dialogues in cardiovascular medicine : DCM","volume":"1 1","pages":"17-31"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantum Turing automata\",\"authors\":\"M. Bartha\",\"doi\":\"10.4204/EPTCS.143.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A denotational semantics of quantum Turing machines having a quantum control is defined in the dagger compact closed category of finite dimensional Hilbert spaces. Using the Moore-Penrose generalized inverse, a new additive trace is introduced on the restriction of this category to isometries, which trace is carried over to directed quantum Turing machines as monoidal automata. The Joyal-Street-Verity Int construction is then used to extend this structure to a reversible bidirectional one.\",\"PeriodicalId\":88470,\"journal\":{\"name\":\"Dialogues in cardiovascular medicine : DCM\",\"volume\":\"1 1\",\"pages\":\"17-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogues in cardiovascular medicine : DCM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.143.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in cardiovascular medicine : DCM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.143.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A denotational semantics of quantum Turing machines having a quantum control is defined in the dagger compact closed category of finite dimensional Hilbert spaces. Using the Moore-Penrose generalized inverse, a new additive trace is introduced on the restriction of this category to isometries, which trace is carried over to directed quantum Turing machines as monoidal automata. The Joyal-Street-Verity Int construction is then used to extend this structure to a reversible bidirectional one.