基于注意力YOLOv4的SAR图像目标检测

Jongmin Park, Geunhyuk Youk, Munchurl Kim
{"title":"基于注意力YOLOv4的SAR图像目标检测","authors":"Jongmin Park, Geunhyuk Youk, Munchurl Kim","doi":"10.9766/kimst.2022.25.5.443","DOIUrl":null,"url":null,"abstract":"Target Detection in synthetic aperture radar(SAR) image is critical for military and national defense. In this paper, we propose YOLOv4-Attention architecture which adds attention modules to YOLOv4 backbone architecture to complement the feature extraction ability for SAR target detection with high accuracy. For training and testing our framework, we present new SAR embedding datasets based on MSTAR SAR public datasets which are about poor environments for target detection such as various clutter, crowded objects, various object size, close to buildings, and weakness of signal-to-clutter ratio. Experiments show that our Attention YOLOv4 architecture outperforms original YOLOv4 architecture in SAR image target detection tasks in poor environments for target detection.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR Image Target Detection based on Attention YOLOv4\",\"authors\":\"Jongmin Park, Geunhyuk Youk, Munchurl Kim\",\"doi\":\"10.9766/kimst.2022.25.5.443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target Detection in synthetic aperture radar(SAR) image is critical for military and national defense. In this paper, we propose YOLOv4-Attention architecture which adds attention modules to YOLOv4 backbone architecture to complement the feature extraction ability for SAR target detection with high accuracy. For training and testing our framework, we present new SAR embedding datasets based on MSTAR SAR public datasets which are about poor environments for target detection such as various clutter, crowded objects, various object size, close to buildings, and weakness of signal-to-clutter ratio. Experiments show that our Attention YOLOv4 architecture outperforms original YOLOv4 architecture in SAR image target detection tasks in poor environments for target detection.\",\"PeriodicalId\":17292,\"journal\":{\"name\":\"Journal of the Korea Institute of Military Science and Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Institute of Military Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9766/kimst.2022.25.5.443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2022.25.5.443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径雷达(SAR)图像中的目标检测对军事和国防具有重要意义。本文提出了YOLOv4- attention架构,在YOLOv4主干架构上增加了注意模块,以补充特征提取能力,实现高精度SAR目标检测。为了训练和测试我们的框架,我们在MSTAR SAR公共数据集的基础上提出了新的SAR嵌入数据集,这些数据集针对目标检测环境较差的情况,如各种杂波、拥挤的目标、各种目标大小、靠近建筑物以及信杂比的弱点。实验表明,在恶劣的目标检测环境下,我们的注意力YOLOv4架构在SAR图像目标检测任务中优于原始的YOLOv4架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR Image Target Detection based on Attention YOLOv4
Target Detection in synthetic aperture radar(SAR) image is critical for military and national defense. In this paper, we propose YOLOv4-Attention architecture which adds attention modules to YOLOv4 backbone architecture to complement the feature extraction ability for SAR target detection with high accuracy. For training and testing our framework, we present new SAR embedding datasets based on MSTAR SAR public datasets which are about poor environments for target detection such as various clutter, crowded objects, various object size, close to buildings, and weakness of signal-to-clutter ratio. Experiments show that our Attention YOLOv4 architecture outperforms original YOLOv4 architecture in SAR image target detection tasks in poor environments for target detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信