卷积神经网络在日本信息板字符识别中的应用

Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri
{"title":"卷积神经网络在日本信息板字符识别中的应用","authors":"Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri","doi":"10.5747/ce.2021.v13.n2.e355","DOIUrl":null,"url":null,"abstract":"Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APLICAÇÃO DE REDES NEURAIS CONVOLUCIONAIS NO RECONHECIMENTO DE CARACTERES EM PLACAS INFORMATIVAS JAPONESAS\",\"authors\":\"Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri\",\"doi\":\"10.5747/ce.2021.v13.n2.e355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2021.v13.n2.e355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n2.e355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与大多数使用拉丁衍生字母的西方国家不同,日本有两个音节字母——平假名和片假名,以及一个汉字字母——汉字。由于这些东方字母与西方字母的书写方式存在巨大差异,西方基于字母的OCR算法往往无法有效地检测日本字符。本研究提出了一种应用数字图像处理技术的方法,如基于颜色范围的分割、边缘检测和数学形态学技术,以正确地检测日本交通信息车牌的视角并分割其中包含的字符。利用卷积神经网络对分割板中包含的平假名字符进行分类,准确率为94.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APLICAÇÃO DE REDES NEURAIS CONVOLUCIONAIS NO RECONHECIMENTO DE CARACTERES EM PLACAS INFORMATIVAS JAPONESAS
Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信