基于递归神经网络的半盲语音增强源分离与去噪

Masaya Wake, Yoshiaki Bando, M. Mimura, Katsutoshi Itoyama, Kazuyoshi Yoshii, Tatsuya Kawahara
{"title":"基于递归神经网络的半盲语音增强源分离与去噪","authors":"Masaya Wake, Yoshiaki Bando, M. Mimura, Katsutoshi Itoyama, Kazuyoshi Yoshii, Tatsuya Kawahara","doi":"10.1109/MLSP.2017.8168191","DOIUrl":null,"url":null,"abstract":"This paper describes a semi-blind speech enhancement method using a semi-blind recurrent neural network (SB-RNN) for human-robot speech interaction. When a robot interacts with a human using speech signals, the robot inputs not only audio signals recorded by its own microphone but also speech signals made by the robot itself, which can be used for semi-blind speech enhancement. The SB-RNN consists of cascaded two modules: a semi-blind source separation module and a blind dereverberation module. Each module has a recurrent layer to capture the temporal correlations of speech signals. The SB-RNN is trained in a manner of multi-task learning, i.e., isolated echoic speech signals are used as teacher signals for the output of the separation module in addition to isolated unechoic signals for the output of the dereverberation module. Experimental results showed that the source to distortion ratio was improved by 2.30 dB on average compared to a conventional method based on a semi-blind independent component analysis. The results also showed the effectiveness of modularization of the network, multi-task learning, the recurrent structure, and semi-blind source separation.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"98 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semi-Blind speech enhancement basedon recurrent neural network for source separation and dereverberation\",\"authors\":\"Masaya Wake, Yoshiaki Bando, M. Mimura, Katsutoshi Itoyama, Kazuyoshi Yoshii, Tatsuya Kawahara\",\"doi\":\"10.1109/MLSP.2017.8168191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a semi-blind speech enhancement method using a semi-blind recurrent neural network (SB-RNN) for human-robot speech interaction. When a robot interacts with a human using speech signals, the robot inputs not only audio signals recorded by its own microphone but also speech signals made by the robot itself, which can be used for semi-blind speech enhancement. The SB-RNN consists of cascaded two modules: a semi-blind source separation module and a blind dereverberation module. Each module has a recurrent layer to capture the temporal correlations of speech signals. The SB-RNN is trained in a manner of multi-task learning, i.e., isolated echoic speech signals are used as teacher signals for the output of the separation module in addition to isolated unechoic signals for the output of the dereverberation module. Experimental results showed that the source to distortion ratio was improved by 2.30 dB on average compared to a conventional method based on a semi-blind independent component analysis. The results also showed the effectiveness of modularization of the network, multi-task learning, the recurrent structure, and semi-blind source separation.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"98 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用半盲递归神经网络(SB-RNN)进行人机语音交互的半盲语音增强方法。当机器人使用语音信号与人进行交互时,机器人不仅输入自身麦克风录制的音频信号,还输入机器人自身发出的语音信号,可用于半盲语音增强。SB-RNN由级联的两个模块组成:半盲源分离模块和盲去噪模块。每个模块都有一个循环层来捕获语音信号的时间相关性。SB-RNN采用多任务学习的方式进行训练,即在分离模块的输出中使用孤立的回声语音信号作为教师信号,在去噪模块的输出中使用孤立的无回声信号。实验结果表明,与基于半盲独立分量分析的传统方法相比,源失真比平均提高了2.30 dB。结果还显示了网络模块化、多任务学习、循环结构和半盲源分离的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Blind speech enhancement basedon recurrent neural network for source separation and dereverberation
This paper describes a semi-blind speech enhancement method using a semi-blind recurrent neural network (SB-RNN) for human-robot speech interaction. When a robot interacts with a human using speech signals, the robot inputs not only audio signals recorded by its own microphone but also speech signals made by the robot itself, which can be used for semi-blind speech enhancement. The SB-RNN consists of cascaded two modules: a semi-blind source separation module and a blind dereverberation module. Each module has a recurrent layer to capture the temporal correlations of speech signals. The SB-RNN is trained in a manner of multi-task learning, i.e., isolated echoic speech signals are used as teacher signals for the output of the separation module in addition to isolated unechoic signals for the output of the dereverberation module. Experimental results showed that the source to distortion ratio was improved by 2.30 dB on average compared to a conventional method based on a semi-blind independent component analysis. The results also showed the effectiveness of modularization of the network, multi-task learning, the recurrent structure, and semi-blind source separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信