二氧化碳施肥可能影响全球碳收支rôle的一阶分析:四种陆地生物圈模式的比较

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
D. Kicklighter, M. Bruno, S. Dönges, G. Esser, M. Heimann, John V. K. Helfrich, F. Ift, F. Joos, J. Kaduk, G. Kohlmaier, A. McGuire, J. Melillo, R. Meyer, B. Moore, A. Nadler, I. Prentice, W. Sauf, A. Schloss, S. Sitch, U. Wittenberg, G. Würth
{"title":"二氧化碳施肥可能影响全球碳收支rôle的一阶分析:四种陆地生物圈模式的比较","authors":"D. Kicklighter, M. Bruno, S. Dönges, G. Esser, M. Heimann, John V. K. Helfrich, F. Ift, F. Joos, J. Kaduk, G. Kohlmaier, A. McGuire, J. Melillo, R. Meyer, B. Moore, A. Nadler, I. Prentice, W. Sauf, A. Schloss, S. Sitch, U. Wittenberg, G. Würth","doi":"10.1034/J.1600-0889.1999.00017.X","DOIUrl":null,"url":null,"abstract":"We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990–2300) changes of atmospheric CO 2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial EcosystemModel (TEM). The results of the model intercomparison suggest that CO 2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called ‘‘missing carbon sink’′ of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO 2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO 2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO 2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO 2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO 2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO 2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystem experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO 2 fertilization on terrestrial carbon storage. DOI: 10.1034/j.1600-0889.1999.00017.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"23 1","pages":"343-366"},"PeriodicalIF":2.3000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"A first‐order analysis of the potential rôle of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models\",\"authors\":\"D. Kicklighter, M. Bruno, S. Dönges, G. Esser, M. Heimann, John V. K. Helfrich, F. Ift, F. Joos, J. Kaduk, G. Kohlmaier, A. McGuire, J. Melillo, R. Meyer, B. Moore, A. Nadler, I. Prentice, W. Sauf, A. Schloss, S. Sitch, U. Wittenberg, G. Würth\",\"doi\":\"10.1034/J.1600-0889.1999.00017.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990–2300) changes of atmospheric CO 2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial EcosystemModel (TEM). The results of the model intercomparison suggest that CO 2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called ‘‘missing carbon sink’′ of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO 2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO 2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO 2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO 2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO 2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO 2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystem experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO 2 fertilization on terrestrial carbon storage. DOI: 10.1034/j.1600-0889.1999.00017.x\",\"PeriodicalId\":54432,\"journal\":{\"name\":\"Tellus Series B-Chemical and Physical Meteorology\",\"volume\":\"23 1\",\"pages\":\"343-366\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"1999-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus Series B-Chemical and Physical Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1034/J.1600-0889.1999.00017.X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1034/J.1600-0889.1999.00017.X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 123

摘要

本文比较了4种陆地生态系统模式(Bern模式、法兰克福模式(FBM)、高分辨率生物圈模式(HRBM)和陆地生态系统模式(TEM)模拟的自然陆地生态系统净初级生产量、异养呼吸、净生态系统生产量和碳储量对历史(1765 ~ 1990)和预估(1990 ~ 2300)大气co2浓度变化的响应。模型相互比较的结果表明,在1990年所谓的2.0 Pg C的“丢失的碳汇”中,自然陆地植被的CO 2施肥有可能占很大一部分。当模型纳入二氧化碳施肥可受养分供应限制的概念时,对这一潜力的估计就会减少。尽管模型对未来由co2施肥引起的陆地碳汇的潜在大小(126 ~ 461 Pg C)有不同的估计,但四个模型的结果表明,由于生理和营养因素对NPP的限制,自然陆地生态系统在未来作为大气co2汇的能力有限。所有空间明确的模式都估计了热带和北温带地区的碳汇,但这些汇的强度随时间而变化。对比研究中不同模式模拟的陆地生态系统对co2施肥的响应差异反映了不同模式对co2施肥对自然陆地生态系统碳动态影响的不同方面,包括反馈机制。由于与氮肥、气候变化和森林再生的相互作用可能在模拟陆地生态系统对co2施肥的响应中起重要作用,这些因素应纳入未来的分析中。空间明确数据集的改进、全生态系统实验和全球净碳交换测量的可用性也将有助于改进未来对二氧化碳施肥对陆地碳储存作用的评估。DOI: 10.1034 / j.1600-0889.1999.00017.x
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A first‐order analysis of the potential rôle of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models
We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990–2300) changes of atmospheric CO 2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial EcosystemModel (TEM). The results of the model intercomparison suggest that CO 2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called ‘‘missing carbon sink’′ of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO 2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO 2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO 2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO 2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO 2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO 2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystem experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO 2 fertilization on terrestrial carbon storage. DOI: 10.1034/j.1600-0889.1999.00017.x
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
3
期刊介绍: Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信