一种用于WiFi反向通道无线供电的960pW协集成天线无线能量采集器

Kamala Raghavan Sadagopan, Jian Kang, Y. Ramadass, A. Natarajan
{"title":"一种用于WiFi反向通道无线供电的960pW协集成天线无线能量采集器","authors":"Kamala Raghavan Sadagopan, Jian Kang, Y. Ramadass, A. Natarajan","doi":"10.1109/ISSCC.2018.8310221","DOIUrl":null,"url":null,"abstract":"Leveraging the ubiquitous WiFi infrastructure to wirelessly power sensors can enable perpetually powered sensors for several monitoring and asset-tracking IoT applications. Small form factor is often desirable to ensure unobtrusive sensors. However, typical 2.4GHz WiFi output power of <+20dBm implies ∼−30dBm (μW) incident power (assuming free space path loss) at a ∼3m range. This presents a fundamental trade-off since small antenna area can further restrict the wireless power available to the rectifier/harvester. In addition, the time-varying nature of RF wireless powering implies that the energy-harvesting approach must accommodate cold start. In this work, we address the challenge of simultaneously achieving small form factor, μW-scale wireless input sensitivity, and operation at relatively high frequency (2.4GHz) by co-designing the antenna, rectifier, and DC-DC converter, achieving −36dBm input sensitivity for a 0.8V output in primary operating mode and −33dBm sensitivity from cold start with overall 1.97cm2 area (including antenna). In contrast to prior work, the proposed wireless harvesting approach optimally extracts energy from the wireless beacon even with < −30dBm (μW) incident power levels. The harvester consumes 960pW quiescent power while supporting cold start. The feasibility of the proposed approach is demonstrated by harvesting energy from a commercial WiFi node.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"44 1","pages":"136-138"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A 960pW Co-Integrated-Antenna Wireless Energy Harvester for WiFi Backchannel Wireless Powering\",\"authors\":\"Kamala Raghavan Sadagopan, Jian Kang, Y. Ramadass, A. Natarajan\",\"doi\":\"10.1109/ISSCC.2018.8310221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging the ubiquitous WiFi infrastructure to wirelessly power sensors can enable perpetually powered sensors for several monitoring and asset-tracking IoT applications. Small form factor is often desirable to ensure unobtrusive sensors. However, typical 2.4GHz WiFi output power of <+20dBm implies ∼−30dBm (μW) incident power (assuming free space path loss) at a ∼3m range. This presents a fundamental trade-off since small antenna area can further restrict the wireless power available to the rectifier/harvester. In addition, the time-varying nature of RF wireless powering implies that the energy-harvesting approach must accommodate cold start. In this work, we address the challenge of simultaneously achieving small form factor, μW-scale wireless input sensitivity, and operation at relatively high frequency (2.4GHz) by co-designing the antenna, rectifier, and DC-DC converter, achieving −36dBm input sensitivity for a 0.8V output in primary operating mode and −33dBm sensitivity from cold start with overall 1.97cm2 area (including antenna). In contrast to prior work, the proposed wireless harvesting approach optimally extracts energy from the wireless beacon even with < −30dBm (μW) incident power levels. The harvester consumes 960pW quiescent power while supporting cold start. The feasibility of the proposed approach is demonstrated by harvesting energy from a commercial WiFi node.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"44 1\",\"pages\":\"136-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

利用无处不在的WiFi基础设施来无线供电传感器可以为多个监控和资产跟踪物联网应用提供永久供电的传感器。较小的外形因素通常是理想的,以确保不引人注目的传感器。然而,典型的2.4GHz WiFi输出功率<+20dBm意味着在~ 3m范围内的入射功率(假设自由空间路径损耗)为~ - 30dBm (μW)。这提出了一个基本的权衡,因为小天线面积会进一步限制整流器/收割机可用的无线功率。此外,射频无线供电的时变特性意味着能量收集方法必须适应冷启动。在这项工作中,我们通过共同设计天线、整流器和DC-DC转换器,解决了同时实现小尺寸、μ w级无线输入灵敏度和相对高频率(2.4GHz)工作的挑战,在主工作模式下,在0.8V输出时实现了−36dBm的输入灵敏度,在冷启动时实现了−33dBm的灵敏度,总面积为1.97cm2(包括天线)。与先前的工作相比,所提出的无线收集方法即使在< - 30dBm (μW)的入射功率水平下也能从无线信标中提取最佳能量。在支持冷启动的同时,采集器的静态功耗为960pW。通过从商业WiFi节点收集能量来证明所提出方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 960pW Co-Integrated-Antenna Wireless Energy Harvester for WiFi Backchannel Wireless Powering
Leveraging the ubiquitous WiFi infrastructure to wirelessly power sensors can enable perpetually powered sensors for several monitoring and asset-tracking IoT applications. Small form factor is often desirable to ensure unobtrusive sensors. However, typical 2.4GHz WiFi output power of <+20dBm implies ∼−30dBm (μW) incident power (assuming free space path loss) at a ∼3m range. This presents a fundamental trade-off since small antenna area can further restrict the wireless power available to the rectifier/harvester. In addition, the time-varying nature of RF wireless powering implies that the energy-harvesting approach must accommodate cold start. In this work, we address the challenge of simultaneously achieving small form factor, μW-scale wireless input sensitivity, and operation at relatively high frequency (2.4GHz) by co-designing the antenna, rectifier, and DC-DC converter, achieving −36dBm input sensitivity for a 0.8V output in primary operating mode and −33dBm sensitivity from cold start with overall 1.97cm2 area (including antenna). In contrast to prior work, the proposed wireless harvesting approach optimally extracts energy from the wireless beacon even with < −30dBm (μW) incident power levels. The harvester consumes 960pW quiescent power while supporting cold start. The feasibility of the proposed approach is demonstrated by harvesting energy from a commercial WiFi node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信