{"title":"采用紫外可见分光光度计同时测定上市制剂中二甲双胍(MET)、沙格列汀(SXG)和达格列净(DGF)的含量","authors":"Priya Barbude, M. Tawar, Prashant J. Burange","doi":"10.52711/2231-5675.2022.00039","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes mellitus (T2DM) is a disorder distinguished by resisting insulin effects and/or its reduced secretion leading to high blood sugar levels. It is fast becoming epidemic worldwide and is a major cause of death in the past years. Maintaining a correct blood sugar level is the primary target in the management of T2DM. Developing a single analytical method for estimation of individual drug from a multidrug composition is a very challenging task. A complexation, derivatization, extraction, evaporation and sensitive-free direct a new, simple, precise, accurate, reproducible, and efficient UV spectrophotometric method is developed and validated for the simultaneous estimation of ternary mixture of metformin (MET), saxagliptin (SXG) and dapagliflozin (DGF) in both their bulk form and combined in tablet dosage form recently approved by FDA in 2019 to be used for treatment of Type 2 diabetes mellitus by simultaneous equation method. The solutions of standard and sample were prepared in methanol: water (80:20 v/v). The 𝜆max for MET, SXG, and DGF were 232.0, 212.0 and 272.0nm, respectively. Calibration curves are linear in the concentration ranges 10-50𝜇g/ml for MET, 1-5𝜇g/ml for SXG and 5-25𝜇g/ml for DGF, respectively. Results of analysis of simultaneous equation method were analyzed and validated for various parameters according to ICH guidelines.","PeriodicalId":8547,"journal":{"name":"Asian Journal of Pharmaceutical Analysis","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method Development using a UV Visible Spectrophotometer for the Simultaneous Estimation of Metformin (MET), Saxagliptin (SXG), and Dapagliflozin (DGF) in Marketed Formulation\",\"authors\":\"Priya Barbude, M. Tawar, Prashant J. Burange\",\"doi\":\"10.52711/2231-5675.2022.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 2 diabetes mellitus (T2DM) is a disorder distinguished by resisting insulin effects and/or its reduced secretion leading to high blood sugar levels. It is fast becoming epidemic worldwide and is a major cause of death in the past years. Maintaining a correct blood sugar level is the primary target in the management of T2DM. Developing a single analytical method for estimation of individual drug from a multidrug composition is a very challenging task. A complexation, derivatization, extraction, evaporation and sensitive-free direct a new, simple, precise, accurate, reproducible, and efficient UV spectrophotometric method is developed and validated for the simultaneous estimation of ternary mixture of metformin (MET), saxagliptin (SXG) and dapagliflozin (DGF) in both their bulk form and combined in tablet dosage form recently approved by FDA in 2019 to be used for treatment of Type 2 diabetes mellitus by simultaneous equation method. The solutions of standard and sample were prepared in methanol: water (80:20 v/v). The 𝜆max for MET, SXG, and DGF were 232.0, 212.0 and 272.0nm, respectively. Calibration curves are linear in the concentration ranges 10-50𝜇g/ml for MET, 1-5𝜇g/ml for SXG and 5-25𝜇g/ml for DGF, respectively. Results of analysis of simultaneous equation method were analyzed and validated for various parameters according to ICH guidelines.\",\"PeriodicalId\":8547,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52711/2231-5675.2022.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52711/2231-5675.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Method Development using a UV Visible Spectrophotometer for the Simultaneous Estimation of Metformin (MET), Saxagliptin (SXG), and Dapagliflozin (DGF) in Marketed Formulation
Type 2 diabetes mellitus (T2DM) is a disorder distinguished by resisting insulin effects and/or its reduced secretion leading to high blood sugar levels. It is fast becoming epidemic worldwide and is a major cause of death in the past years. Maintaining a correct blood sugar level is the primary target in the management of T2DM. Developing a single analytical method for estimation of individual drug from a multidrug composition is a very challenging task. A complexation, derivatization, extraction, evaporation and sensitive-free direct a new, simple, precise, accurate, reproducible, and efficient UV spectrophotometric method is developed and validated for the simultaneous estimation of ternary mixture of metformin (MET), saxagliptin (SXG) and dapagliflozin (DGF) in both their bulk form and combined in tablet dosage form recently approved by FDA in 2019 to be used for treatment of Type 2 diabetes mellitus by simultaneous equation method. The solutions of standard and sample were prepared in methanol: water (80:20 v/v). The 𝜆max for MET, SXG, and DGF were 232.0, 212.0 and 272.0nm, respectively. Calibration curves are linear in the concentration ranges 10-50𝜇g/ml for MET, 1-5𝜇g/ml for SXG and 5-25𝜇g/ml for DGF, respectively. Results of analysis of simultaneous equation method were analyzed and validated for various parameters according to ICH guidelines.