自由周期群中子集的幂

V. S. Atabekyan, H. T. Aslanyan, Satenik T. Aslanyan
{"title":"自由周期群中子集的幂","authors":"V. S. Atabekyan, H. T. Aslanyan, Satenik T. Aslanyan","doi":"10.46991/pysu:a/2022.56.2.043","DOIUrl":null,"url":null,"abstract":"It is proved that for every odd $n \\ge 1039$ there are two words $u(x, y), v(x,y)$ of length $\\le 658n^2$ over the group alphabet $\\{x,y\\}$ of the free Burnside group $B(2 ,n),$ which generate a free Burnside subgroup of the group $B(2,n)$. This implies that for any finite subset $S$ of the group $B(m,n)$ the inequality $|S^t|>4\\cdot 2.9^{[\\frac{t}{658s^2}]}$ holds, where $s$ is the smallest odd divisor of $n$ that satisfies the inequality $s\\ge1039$.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POWERS OF SUBSETS IN FREE PERIODIC GROUPS\",\"authors\":\"V. S. Atabekyan, H. T. Aslanyan, Satenik T. Aslanyan\",\"doi\":\"10.46991/pysu:a/2022.56.2.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proved that for every odd $n \\\\ge 1039$ there are two words $u(x, y), v(x,y)$ of length $\\\\le 658n^2$ over the group alphabet $\\\\{x,y\\\\}$ of the free Burnside group $B(2 ,n),$ which generate a free Burnside subgroup of the group $B(2,n)$. This implies that for any finite subset $S$ of the group $B(m,n)$ the inequality $|S^t|>4\\\\cdot 2.9^{[\\\\frac{t}{658s^2}]}$ holds, where $s$ is the smallest odd divisor of $n$ that satisfies the inequality $s\\\\ge1039$.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2022.56.2.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2022.56.2.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了对于每一个奇数$n \ge 1039$,在自由Burnside群$B(2 ,n),$的群字母表$\{x,y\}$上有两个长度为$\le 658n^2$的单词$u(x, y), v(x,y)$,它们产生了自由Burnside群$B(2,n)$的子群。这意味着对于群$B(m,n)$的任意有限子集$S$,不等式$|S^t|>4\cdot 2.9^{[\frac{t}{658s^2}]}$成立,其中$s$是满足不等式$s\ge1039$的$n$的最小奇约数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POWERS OF SUBSETS IN FREE PERIODIC GROUPS
It is proved that for every odd $n \ge 1039$ there are two words $u(x, y), v(x,y)$ of length $\le 658n^2$ over the group alphabet $\{x,y\}$ of the free Burnside group $B(2 ,n),$ which generate a free Burnside subgroup of the group $B(2,n)$. This implies that for any finite subset $S$ of the group $B(m,n)$ the inequality $|S^t|>4\cdot 2.9^{[\frac{t}{658s^2}]}$ holds, where $s$ is the smallest odd divisor of $n$ that satisfies the inequality $s\ge1039$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信