稀疏图上的慢着色游戏:$k$-退化,平面和外平面

IF 0.4 Q4 MATHEMATICS, APPLIED
G. Gutowski, Tomasz Krawczyk, Krzysztof Maziarz, D. West, Michal Zajkac, Xuding Zhu
{"title":"稀疏图上的慢着色游戏:$k$-退化,平面和外平面","authors":"G. Gutowski, Tomasz Krawczyk, Krzysztof Maziarz, D. West, Michal Zajkac, Xuding Zhu","doi":"10.4310/JOC.2021.v12.n2.a6","DOIUrl":null,"url":null,"abstract":"The \\emph{slow-coloring game} is played by Lister and Painter on a graph $G$. Initially, all vertices of $G$ are uncolored. In each round, Lister marks a nonempty set $M$ of uncolored vertices, and Painter colors a subset of $M$ that is independent in $G$. The game ends when all vertices are colored. The score of the game is the sum of the sizes of all sets marked by Lister. The goal of Painter is to minimize the score, while Lister tries to maximize it. We provide strategies for Painter on various classes of graphs whose vertices can be partitioned into a bounded number of sets inducing forests, including $k$-degenerate, acyclically $k$-colorable, planar, and outerplanar graphs. For example, we show that on an $n$-vertex graph $G$, Painter can keep the score to at most $\\frac{3k+4}4n$ when $G$ is $k$-degenerate, $3.9857n$ when $G$ is acyclically $5$-colorable, $3n$ when $G$ is planar with a Hamiltonian dual, $\\frac{8n+3m}5$ when $G$ is $4$-colorable with $m$ edges (hence $3.4n$ when $G$ is planar), and $\\frac73n$ when $G$ is outerplanar.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"218 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The slow-coloring game on sparse graphs: $k$-degenerate, planar, and outerplanar\",\"authors\":\"G. Gutowski, Tomasz Krawczyk, Krzysztof Maziarz, D. West, Michal Zajkac, Xuding Zhu\",\"doi\":\"10.4310/JOC.2021.v12.n2.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The \\\\emph{slow-coloring game} is played by Lister and Painter on a graph $G$. Initially, all vertices of $G$ are uncolored. In each round, Lister marks a nonempty set $M$ of uncolored vertices, and Painter colors a subset of $M$ that is independent in $G$. The game ends when all vertices are colored. The score of the game is the sum of the sizes of all sets marked by Lister. The goal of Painter is to minimize the score, while Lister tries to maximize it. We provide strategies for Painter on various classes of graphs whose vertices can be partitioned into a bounded number of sets inducing forests, including $k$-degenerate, acyclically $k$-colorable, planar, and outerplanar graphs. For example, we show that on an $n$-vertex graph $G$, Painter can keep the score to at most $\\\\frac{3k+4}4n$ when $G$ is $k$-degenerate, $3.9857n$ when $G$ is acyclically $5$-colorable, $3n$ when $G$ is planar with a Hamiltonian dual, $\\\\frac{8n+3m}5$ when $G$ is $4$-colorable with $m$ edges (hence $3.4n$ when $G$ is planar), and $\\\\frac73n$ when $G$ is outerplanar.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/JOC.2021.v12.n2.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/JOC.2021.v12.n2.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

The \emph{慢色游戏} 是由李斯特和佩因特在图表上扮演的吗 $G$. 的所有顶点 $G$ 是无色的。在每一轮中,Lister标记一个非空集合 $M$ 的未着色顶点,而Painter为的子集着色 $M$ 这是独立于 $G$. 当所有顶点都上色时,游戏结束。游戏的分数是由Lister标记的所有集合的大小之和。Painter的目标是最小化分数,而Lister的目标是最大化分数。我们为Painter提供了处理各种图的策略,这些图的顶点可以划分为有限数量的集合,包括森林 $k$-简并,非循环的 $k$-可着色、平面和外平面图形。例如,我们在一个 $n$-顶点图 $G$画家最多能把比分控制在1分以内 $\frac{3k+4}4n$ 什么时候 $G$ 是 $k$-简并; $3.9857n$ 什么时候 $G$ 是非周期性的 $5$-可着色的; $3n$ 什么时候 $G$ 是具有哈密顿对偶的平面, $\frac{8n+3m}5$ 什么时候 $G$ 是 $4$-可着色的 $m$ 边(因此) $3.4n$ 什么时候 $G$ 是平面的),和 $\frac73n$ 什么时候 $G$ 是外平面的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The slow-coloring game on sparse graphs: $k$-degenerate, planar, and outerplanar
The \emph{slow-coloring game} is played by Lister and Painter on a graph $G$. Initially, all vertices of $G$ are uncolored. In each round, Lister marks a nonempty set $M$ of uncolored vertices, and Painter colors a subset of $M$ that is independent in $G$. The game ends when all vertices are colored. The score of the game is the sum of the sizes of all sets marked by Lister. The goal of Painter is to minimize the score, while Lister tries to maximize it. We provide strategies for Painter on various classes of graphs whose vertices can be partitioned into a bounded number of sets inducing forests, including $k$-degenerate, acyclically $k$-colorable, planar, and outerplanar graphs. For example, we show that on an $n$-vertex graph $G$, Painter can keep the score to at most $\frac{3k+4}4n$ when $G$ is $k$-degenerate, $3.9857n$ when $G$ is acyclically $5$-colorable, $3n$ when $G$ is planar with a Hamiltonian dual, $\frac{8n+3m}5$ when $G$ is $4$-colorable with $m$ edges (hence $3.4n$ when $G$ is planar), and $\frac73n$ when $G$ is outerplanar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信