半代数群的局部可定义子群

IF 0.9 1区 数学 Q1 LOGIC
E. Baro, Pantelis E. Eleftheriou, Y. Peterzil
{"title":"半代数群的局部可定义子群","authors":"E. Baro, Pantelis E. Eleftheriou, Y. Peterzil","doi":"10.1142/s0219061320500099","DOIUrl":null,"url":null,"abstract":"We prove the following instance of a conjecture stated in arXiv:1103.4770. Let $G$ be an abelian semialgebraic group over a real closed field $R$ and let $X$ be a semialgebraic subset of $G$. Then the group generated by $X$ contains a generic set and, if connected, it is divisible. More generally, the same result holds when $X$ is definable in any o-minimal expansion of $R$ which is elementarily equivalent to $\\mathbb R_{an,exp}$. We observe that the above statement is equivalent to saying: there exists an $m$ such that $\\Sigma_{i=1}^m(X-X)$ is an approximate subgroup of $G$.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"159 1","pages":"2050009:1-2050009:17"},"PeriodicalIF":0.9000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally definable subgroups of semialgebraic groups\",\"authors\":\"E. Baro, Pantelis E. Eleftheriou, Y. Peterzil\",\"doi\":\"10.1142/s0219061320500099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the following instance of a conjecture stated in arXiv:1103.4770. Let $G$ be an abelian semialgebraic group over a real closed field $R$ and let $X$ be a semialgebraic subset of $G$. Then the group generated by $X$ contains a generic set and, if connected, it is divisible. More generally, the same result holds when $X$ is definable in any o-minimal expansion of $R$ which is elementarily equivalent to $\\\\mathbb R_{an,exp}$. We observe that the above statement is equivalent to saying: there exists an $m$ such that $\\\\Sigma_{i=1}^m(X-X)$ is an approximate subgroup of $G$.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"159 1\",\"pages\":\"2050009:1-2050009:17\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061320500099\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061320500099","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了arXiv:1103.4770中一个猜想的以下实例。设$G$是实闭域$R$上的一个阿贝尔半代数群,设$X$是$G$的一个半代数子集。则由$X$生成的群包含一个泛型集合,如果连通,则它是可整除的。更一般地说,当$X$在$R$的任何0最小展开中可定义时,同样的结果也成立,$R$基本等同于$\mathbb R_{an,exp}$。我们观察到上面的陈述等价于说:存在一个$m$使得$\Sigma_{i=1}^m(X-X)$是$G$的近似子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally definable subgroups of semialgebraic groups
We prove the following instance of a conjecture stated in arXiv:1103.4770. Let $G$ be an abelian semialgebraic group over a real closed field $R$ and let $X$ be a semialgebraic subset of $G$. Then the group generated by $X$ contains a generic set and, if connected, it is divisible. More generally, the same result holds when $X$ is definable in any o-minimal expansion of $R$ which is elementarily equivalent to $\mathbb R_{an,exp}$. We observe that the above statement is equivalent to saying: there exists an $m$ such that $\Sigma_{i=1}^m(X-X)$ is an approximate subgroup of $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信