沉浸式投影环境中互反射的感知辐射补偿

Yuqi Li, Qingshu Yuan, Dongming Lu
{"title":"沉浸式投影环境中互反射的感知辐射补偿","authors":"Yuqi Li, Qingshu Yuan, Dongming Lu","doi":"10.1145/2503713.2503720","DOIUrl":null,"url":null,"abstract":"We present a fast perceptual radiometric compensation method for inter-reflection in immersive projection environment. Radiometric compensation is the inverse process of light transport. As light transport process can be described by a matrix-vector multiplication equation, radiometric compensation for inter-reflection can be achieved by solving the equation to get the vector, during which matrix inversion should be computed. As the dimensions of the matrix are equivalent to the resolution of images, such matrix inversion is both time and storage consuming. Unlike previous methods, our method adopts projector-camera system to simulate the inversion, and treats the compensation as a non-linear optimization problem which is formulated from full light transport matrix and non-linear color space conversion. To make physical multiplication simulation more practical, the method adjusts the range of projector-camera system adaptively and reduces the high-frequency errors caused by clipping error and measured error to make the compensated results smoother. We implement an immersive projection display prototype. The experiments show that our method achieves better results compared with the previous method.","PeriodicalId":93673,"journal":{"name":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","volume":"246 1","pages":"201-208"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Perceptual radiometric compensation for inter-reflection in immersive projection environment\",\"authors\":\"Yuqi Li, Qingshu Yuan, Dongming Lu\",\"doi\":\"10.1145/2503713.2503720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fast perceptual radiometric compensation method for inter-reflection in immersive projection environment. Radiometric compensation is the inverse process of light transport. As light transport process can be described by a matrix-vector multiplication equation, radiometric compensation for inter-reflection can be achieved by solving the equation to get the vector, during which matrix inversion should be computed. As the dimensions of the matrix are equivalent to the resolution of images, such matrix inversion is both time and storage consuming. Unlike previous methods, our method adopts projector-camera system to simulate the inversion, and treats the compensation as a non-linear optimization problem which is formulated from full light transport matrix and non-linear color space conversion. To make physical multiplication simulation more practical, the method adjusts the range of projector-camera system adaptively and reduces the high-frequency errors caused by clipping error and measured error to make the compensated results smoother. We implement an immersive projection display prototype. The experiments show that our method achieves better results compared with the previous method.\",\"PeriodicalId\":93673,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"246 1\",\"pages\":\"201-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2503713.2503720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2503713.2503720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种快速感知辐射补偿方法,用于沉浸式投影环境下的互反射。辐射补偿是光输运的逆过程。由于光的传输过程可以用矩阵-矢量乘法方程来描述,因此对间反射的辐射补偿可以通过求解该方程得到矢量来实现,在此过程中需要计算矩阵反演。由于矩阵的维数相当于图像的分辨率,这种矩阵反演既费时又耗存储。与以往的方法不同,我们的方法采用投影-摄像机系统模拟反演,并将补偿作为一个由全光传输矩阵和非线性色彩空间转换构成的非线性优化问题。为了使物理乘法仿真更切合实际,该方法自适应调整投影-摄像机系统的范围,减小由裁剪误差和测量误差引起的高频误差,使补偿结果更平滑。我们实现了一个沉浸式投影显示原型。实验结果表明,与已有的方法相比,该方法取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perceptual radiometric compensation for inter-reflection in immersive projection environment
We present a fast perceptual radiometric compensation method for inter-reflection in immersive projection environment. Radiometric compensation is the inverse process of light transport. As light transport process can be described by a matrix-vector multiplication equation, radiometric compensation for inter-reflection can be achieved by solving the equation to get the vector, during which matrix inversion should be computed. As the dimensions of the matrix are equivalent to the resolution of images, such matrix inversion is both time and storage consuming. Unlike previous methods, our method adopts projector-camera system to simulate the inversion, and treats the compensation as a non-linear optimization problem which is formulated from full light transport matrix and non-linear color space conversion. To make physical multiplication simulation more practical, the method adjusts the range of projector-camera system adaptively and reduces the high-frequency errors caused by clipping error and measured error to make the compensated results smoother. We implement an immersive projection display prototype. The experiments show that our method achieves better results compared with the previous method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信