{"title":"机器学习可能没有预期的那么好:来自失业率预测的证据","authors":"Tsungwu Ho","doi":"10.2139/ssrn.3496138","DOIUrl":null,"url":null,"abstract":"This paper proposes a training framework by rolling k-fold cross-validation to compare forecasting performance of several quantitative methods, mainly standard time series and our pre-selected machine learning methods. Using US unemployment rate, we find that: Firstly, individual machine learning constituents may not perform as good as standard time series; secondly, among on constituent basis, SVM (support vector machine) performs the best, the deep learning (RNN-LSTM) unexpectedly performs the worst; thirdly, forecasting averaging evidence shows that the automatic machine learning (autoML, h2o.ai) performs less than our pre-selected machine learning methods, and the averaged standard time series is better than autoML. We conclude that forecasting averaging is a good way to combine diversified forecasts and a suitable combination of methods depends on the data.","PeriodicalId":18891,"journal":{"name":"Mutual Funds","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning may not be as good as expected : Evidence from unemployment rate forecasting\",\"authors\":\"Tsungwu Ho\",\"doi\":\"10.2139/ssrn.3496138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a training framework by rolling k-fold cross-validation to compare forecasting performance of several quantitative methods, mainly standard time series and our pre-selected machine learning methods. Using US unemployment rate, we find that: Firstly, individual machine learning constituents may not perform as good as standard time series; secondly, among on constituent basis, SVM (support vector machine) performs the best, the deep learning (RNN-LSTM) unexpectedly performs the worst; thirdly, forecasting averaging evidence shows that the automatic machine learning (autoML, h2o.ai) performs less than our pre-selected machine learning methods, and the averaged standard time series is better than autoML. We conclude that forecasting averaging is a good way to combine diversified forecasts and a suitable combination of methods depends on the data.\",\"PeriodicalId\":18891,\"journal\":{\"name\":\"Mutual Funds\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutual Funds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3496138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutual Funds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3496138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning may not be as good as expected : Evidence from unemployment rate forecasting
This paper proposes a training framework by rolling k-fold cross-validation to compare forecasting performance of several quantitative methods, mainly standard time series and our pre-selected machine learning methods. Using US unemployment rate, we find that: Firstly, individual machine learning constituents may not perform as good as standard time series; secondly, among on constituent basis, SVM (support vector machine) performs the best, the deep learning (RNN-LSTM) unexpectedly performs the worst; thirdly, forecasting averaging evidence shows that the automatic machine learning (autoML, h2o.ai) performs less than our pre-selected machine learning methods, and the averaged standard time series is better than autoML. We conclude that forecasting averaging is a good way to combine diversified forecasts and a suitable combination of methods depends on the data.